[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 22, Issue 2 (3-2018) ::
Andishe 2018, 22(2): 81-91 Back to browse issues page
The Beta Gompertz Geometric distribution: Mathematical Properties and Applications
Ali Shadrokh , Shahram Yaghoobzadeh Shahrastani
Payame Noor University
Abstract:   (691 Views)

‎In this paper‎, ‎a new five-parameter so-called Beta-Gompertz Geometric (BGG) distribution is introduced that can have a decreasing‎, ‎increasing‎, ‎and bathtub-shaped failure rate function depending on its parameters‎. ‎Some mathematical properties of the this distribution‎, ‎such as the density and hazard rate functions‎, ‎moments‎, ‎moment generating function‎, ‎R and Shannon entropy‎, ‎Bonferroni and Lorenz curves and the mean deavations are provided‎. ‎We discuss maximum likelihood estimation of the BGG parameters from one observed sample‎. ‎At the end‎, ‎in order to show the BGG distribution flexibility‎, ‎an application using a real data set is presented‎.

Keywords: ‎Gompertz distribution‎, ‎Ploynomial Sterlings‎, ‎Beta Gompertz Geometric distribution‎, ‎hazard function‎, ‎Maximum liklihood estimation‎.
Full-Text [PDF 1577 kb]   (215 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/04/29 | Accepted: 2018/04/9 | Published: 2018/04/9
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shadrokh A, Yaghoobzadeh S. The Beta Gompertz Geometric distribution: Mathematical Properties and Applications. Andishe. 2018; 22 (2) :81-91
URL: http://andisheyeamari.irstat.ir/article-1-487-en.html

Volume 22, Issue 2 (3-2018) Back to browse issues page
مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.06 seconds with 32 queries by YEKTAWEB 3858