[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: ::
Back to the articles list Back to browse issues page
The Beta Gompertz Geometric distribution:‎‎Mathematical ‎Properties ‎and ‎Applications
Ali Shadrokh , Shahram Yaghoobzadeh Shahrastani
Payame Noor University
Abstract:   (88 Views)

‎‎In this paper‎, ‎we introduce a new five-parameter is called Beta-Gompertz Geometric (BGG) distribution‎. ‎‎‎‎It can have a decreasing‎, ‎increasing‎, ‎and bathtub-shaped failure rate function depending on its parameters‎. ‎Some mathematical properties of the new distribution‎, ‎such as the density ‎and‎ ‎hazard rate ‎functions‎‎, ‎moments‎, ‎moment generating function‎, ‎$Racute{e}nyi$ and Shannon entropy‎, ‎Bonferroni and Lorenz curves and the mean deavations are provided‎. ‎We discuss maximum likelihood estimation of the BGG parameters from one observed sample‎. ‎At the end‎, ‎in order to show the BGG distribution flexibility‎, ‎an application using a real data set is ‎presented.‎

Keywords: ‎Gompertz distribution‎‎, ‎Ploynomial Sterlings, Beta ‎Gompertz ‎Geometric distribution, hazard function, Maximum liklihood estimation‎‎‎.
Full-Text [PDF 3830 kb]   (40 Downloads)    
Type of Study: Research | Subject: Special
Received: 2017/04/29 | Accepted: 2018/04/9 | Published: 2018/04/9
Send email to the article author

Add your comments about this article
Your username or Email:

Write the security code in the box >


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shadrokh A, Yaghoobzadeh S. The Beta Gompertz Geometric distribution:‎‎Mathematical ‎Properties ‎and ‎Applications. Andishe. 2018; 22 (2)
URL: http://andisheyeamari.irstat.ir/article-1-487-en.html


Back to the articles list Back to browse issues page
مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.05 seconds with 31 queries by YEKTAWEB 3660