[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
:: Volume 26, Issue 2 (3-2022) ::
Andishe 2022, 26(2): 117-126 Back to browse issues page
Sensitivity analysis of input variables in generalized linear models
Mohammad Khorasani *, Farzad Eskandari
Allameh Tabataba’i University
Abstract:   (348 Views)

In today’s world, using the statistical modeling process, natural phenomena can be used to analyze and predict the events under study. ‎ Many hydrological modeling methods do not make the best use of available information because hydrological models show a wide range of environmental processes that complex the model‎‏. ‎‎‎‎In particular, when predicting, parameters affect the performance of statistical models. In many risk assessment issues, the presence of uncertainty in the parameters leads to uncertainty in predicting the model. Global sensitivity analysis is a tool used to show uncertainty and
is used in decision making, risk assessment, model simplifcation and so on. Minkowski distance sensitivity analysis and regional sensitivity analysis are two broad methods that can work with a given sample set of model input-output pair. One signifcant difference between them is that minkowski distance sensitivity analysis analyzes output distributions conditional on input values (forward), while regional sensitivity analysis analyzes input distributions conditional on output values (reverse). In this dissertation, we study the relationship between these two approaches and show that regional sensitivity analysis (reverse), when focusing on probability density functions of input, converges towards minkowski distance sensitivity analysis (forward) as the number of classes for conditioning model outputs in the reverse method increases. Similar to the existing general form of forward sensitivity indices, we derive a general form of the reverse sensitivity indices and provide the corresponding reverse given-data method. Finally, the sensitivity analysis of a water storage design with high dimensions of the model outputs is performed.

Keywords: Global sensitivity analysis, Minkowski distance sensitivity analysis, regional sensitivity analysis, Classifcation of output.
Full-Text [PDF 668 kb]   (172 Downloads)    
Type of Study: Applicable | Subject: General
Received: 2022/03/16 | Accepted: 2022/03/30 | Published: 2022/09/8
1. [1] Bergstroem, S. (1975), The development of a snow routine for the HBV-2 model, Hydrology Research, 6, 73. [DOI:10.2166/nh.1975.0006]
2. [2] Beven, K. J. (2011), Rainfall-runoff modelling: the primer, John Wiley & Sons, West Sussex. [DOI:10.1002/9781119951001]
3. [3] Borgonovo, E. (2007), A new uncertainty importance measure, Reliability Engineering & System Safety, 92, 771-784. [DOI:10.1016/j.ress.2006.04.015]
4. [4] Borgonovo, E., Hazen, G. B., and Plischke, E. (2016), A common rationale for global sensitivity measures and their estimation, Risk Analysis, 36, 1871-1895. [DOI:10.1111/risa.12555]
5. [5] Botev, Z. I., Grotowski, J. F., Kroese, D. P., et al. (2010), Kernel density estimation via diffusion, The annals of Statistics, 38, 2916-2957. [DOI:10.1214/10-AOS799]
6. [6] Da Veiga, S. (2015), Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, 85, 1283-1305. [DOI:10.1080/00949655.2014.945932]
7. [7] Freedman, D. and Diaconis, P. (1981), On the histogram as a density estimator: L 2 theory, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57, 453-476. [DOI:10.1007/BF01025868]
8. [8] Kollat, J., Reed, P., and Wagener, T. (2012), When are multiobjective calibration trade-offs in hydrologic models meaningful?, Water Resources Research, 48(3). [DOI:10.1029/2011WR011534]
9. [9] Oreskes, N., Shrader-Frechette, K., and Belitz, K. (1994), Verifcation, validation, and confrmation of numerical models in the earth sciences, Science, 263, 641-646. [DOI:10.1126/science.263.5147.641]
10. [10] Plischke, E., Borgonovo, E., and Smith, C. L. (2013), Global sensitivity measures from given data, European Journal of Operational Research, 226, 536-550. [DOI:10.1016/j.ejor.2012.11.047]
11. [11] Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Tarantola, S. (2010), Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer physics communications, 181, 259-270. [DOI:10.1016/j.cpc.2009.09.018]
12. [12] Sobol, I. M. (1993), Sensitivity analysis for non-linear mathematical models, Mathematical modelling and computational experiment, 1, 407-414.
13. [13] Spear, R. C., Grieb, T. M., and Shang, N. (1994), Parameter uncertainty and interaction in complex environmental models, Water Resources Research, 30, 3159-3169. [DOI:10.1029/94WR01732]
14. [14] Wagener, T., Boyle, D. P., Lees, M. J., Wheater, H. S., Gupta, H. V., and Sorooshian, S. (2001), A framework for development and application of hydrological models, Hydrology and Earth System Sciences, 5, 13-26. [DOI:10.5194/hess-5-13-2001]
15. [15] Zhai, Q., Yang, J., Xie, M., Zhao, Y. (2014). Generalized moment-independent importance measures based on Minkowski distance. European Journal of Operational Research, 239(2), 449-455. [DOI:10.1016/j.ejor.2014.05.021]
Send email to the article author

Add your comments about this article
Your username or Email:


XML   Persian Abstract   Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

khorasani M, eskandari F. Sensitivity analysis of input variables in generalized linear models. Andishe 2022; 26 (2) :117-126
URL: http://andisheyeamari.irstat.ir/article-1-885-en.html

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 26, Issue 2 (3-2022) Back to browse issues page
مجله اندیشه آماری Andishe _ye Amari
Persian site map - English site map - Created in 0.04 seconds with 30 queries by YEKTAWEB 4540