1. ١] بهرامی، م. ( ١٣٩۴ )، مدل های آمیخته متناهی مبتنی بر توزیع های چوله متقارن، پایان نامه دوره ارشد، دانشگاه تربیت مدرس. ] 2. [2] ArellanoValle, R. B., Gómez, H. W., and Quintana, F. A. (2004). A New Class of SkewNormal Distributions. Communications in StatisticsTheory and Methods, 33(7), 14651480. [ DOI:10.1081/STA120037254] 3. [3] ArellanoValle, R. B., Castro, L. M., Genton, M. G., and Gómez, H. W. (2008). Bayesian Inference for Shape Mixtures of Skewed Distributions, with Application to Regression Analysis. Bayesian Analysis, 3(3), 513539. [ DOI:10.1214/08BA320] 4. [4] Azzalini, A. (1985). A Class of Distributions Which Includes the Normal Ones. Scandinavian journal of statistics, 12, 171178. 5. [5] Azzalini, A., and Capitanio, A. (1999). Statistical Applications of the Multivariate Skew Normal Distribution. Journal of the Royal Statistical Society, Series B, 61(3), 579602. [ DOI:10.1111/14679868.00194] 6. [6] Cancho, V. G., Dey, D. K., Lachos, V. H., and Andrade, M. G. (2011). Bayesian Nonlinear Regression Models with Scale Mixtures of SkewNormal Distributions: Estimation and case Influence Diagnostics. Computational Statistics and Data Analysis, 55(1), 588602. [ DOI:10.1016/j.csda.2010.05.032] 7. [7] ElalOlivero, D. (2010), AlphaSkewNormal Distribution. Proyecciones Journal of Mathematics. 29(3), 224240., 11, 12. [ DOI:10.4067/S071609172010000300006] 8. [8] ElalOlivero, D., OlivaresPacheco, J. F., Venegas, O., Bolfarine, H., and Gomez, H. W. (2020). On Properties of the Bimodal SkewNormal Distribution and an Application. Mathematics, 8(5), 703. [ DOI:10.3390/math8050703] 9. [9] Gómez, H. W., ElalOlivero, D., Salinas, H. S., and Bolfarine, H. (2011). Bimodal Extension Based on the SkewNormal Distribution with Application to Pollen Data. Environmetrics, 22(1), 5062. [ DOI:10.1002/env.1026] 10. [10] Henze, N. (1986). A Probabilistic Representation of the SkewNormal Distribution, Scandinavian Journal of Statistics. 13, 271275. 11. [11] Lachos, V., Bolfarine, H., ArellanoValle, R. and Montenegro, L. (2007). Likelihood Based Inference for Multivariate SkewNormal Regression Models. Communications in StatisticsTheory and Methods, 36, 17691786. [ DOI:10.1080/03610920601126241] 12. [12] Lin, T. I., Lee, J. C., and Yen, S. Y. (2007). Finite Mixture Modelling Using the SkewNormal Distribution. Statistica Sinica, 17: 8192. [ DOI:10.1007/s1122200690058] 13. [13] Marin, J. M., Mengersen, K., and Robert, C. P. (2005). Bayesian Modelling and Inference on Mixtures of Distributions. Handbook of Statistics, 25, 459507. [ DOI:10.1016/S01697161(05)250162] 14. [14] McLachan, G. and Peel, D. (2000). Mixture Models: Inference and Applications to Clustering, Marcel Dekker, N.Y. 15. [15] Pewsey, A. (2003), The Characteristic Functions of the SkewNormal and Wrapped SkewNormal Distributions, In 27 Congreso Nacional de Estadisticae InvestigacionOperativa, pp. 43834386. 16. [16] Sartori, N. 2006. Bias Prevention of Maximum Likelihood Estimates for Scalar SkewNormal and Skewt Distributions. J. Statist. Plann. Inference, 136, 42594275. [ DOI:10.1016/j.jspi.2005.08.043]
