:: Volume 26, Issue 2 (3-2022) ::
Andishe 2022, 26(2): 53-65 Back to browse issues page
‎Analysis of Covid-19 epidemic using percolation theory
Ramin Kazemi * , Mohammad Qasem Vahidi-Asl
Imam Khomeini international university
Abstract:   (1220 Views)

Knowledge of statistics, ever since its inception, has served every aspect of human life and every individual and social class. It has shown its extraordinary potential in dealing with numerous problems encountering human beings since the occurring of Covid-19 in Wuhan, China. A vast amount of literature has appeared showing the power of the science of statistics in answering different questions regarding this disease and all its consequences. But it comes short of, as an instance, in modelling the geometry of disease spread among societies and in the world as a whole. Here the only way to deal with this matter is to resort to probability theory and its many ramifications in providing realistic models in describing this spread. A very power tool in this regard is percolation theory, which besides its many applications in mathematical physics, is very handy in modelling epidemic diseases, among them the Covid-19.  A short description of this theory with its use in modelling the spread of epidemic deceases, shows the importance of dealing with probability as a separate subject in the curricula and not a subordinate of the science of statistics which is now dominant in the statistics major curricula in the Iranian schools.

Keywords: Epidemic, Covid-19, percolation, ‎percolative‎.
Full-Text [PDF 1348 kb]   (895 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/02/23 | Accepted: 2022/03/30 | Published: 2022/09/8
References
1. [1] Belavin, A.A., Polyakov, A.M., Zamolodchikov A.B. (1984). Infinite conformal symmetry of critical fluctuations in two dimensions. J. Statist. Phys, 34, 763-774. [DOI:10.1007/BF01009438]
2. [2] Benjamini, I., Schramm, O. (1996). Percolation beyond Zd, many questions and a few answers. Electron. Comm. Probab, 1(8), 41-59. [DOI:10.1214/ECP.v1-978]
3. [3] Bollobas, B., Riordan, O. (2006). The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theor. Rel. Fields, 136(3), 417-468. [DOI:10.1007/s00440-005-0490-z]
4. [4] Bollobas, B., Riordan. O. (2012). Percolation. Cambridge University Press.
5. [5] Broadbent, S.R., Hammersley, J.M. (1957). Percolation processes. I. crystals and mazes. Proc. Cambridge Philos. Soc, 53, 629-641. [DOI:10.1017/S0305004100032680]
6. [6] Camia, F., Newman, C. (2006). Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys, 268(1), 1-38. [DOI:10.1007/s00220-006-0086-1]
7. [7] Duminil-Copin, H. (2017). Sixty years of percolation, arxiv:1712.04651v1.
8. [8] Kesten, H. (1980). The critical probability of bond percolation on the square lattice equals 1/2. Comm. Math. Phys, 41-59. [DOI:10.1007/BF01197577]
9. [9] Haggstrom, O., Peres, Y. and Steif, J. (1997). Dynamical percolation. Ann. Inst. H. Poincare Probab. Statist, 33, 497-528. [DOI:10.1016/S0246-0203(97)80103-3]
10. [10] Hansen, B.T., Muller, T. (2021). Poisson-Voronoi percolation in the hyperbolic plane with small intensities, arXiv:2111.04299v2.
11. [11] Cardy, J.L. (1992). Critical percolation in finite geometries. J. Phys. A, 25, L201-L206. [DOI:10.1088/0305-4470/25/4/009]
12. [12] Duminil-Copin, H. (2017). Lectures on the Ising and Potts models on the hypercubic lattice, arXiv:1707.00520.
13. [13] Mello, I.F., Squillante, L., Gomes, G.O., Seridonio, A.C., and Souza, M. (2021). Epidemics, the Ising-model and percolation theory: a comprehensive review focussed on covid-19. Physica A, 1-33. [DOI:10.1016/j.physa.2021.125963]
14. [14] Morio, J., Balesdent, M. (2016). Estimation of rare event probabilities in complex aerospace and other systems: a practical approach. J. Mach. Lear. Res, 2825-2830.
15. [15] Pedregosa, F., Varoquaux, G., Gramfort, A., , Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res, 12, 2825-2830.
16. [16] Smirnov, S. private communications.
17. [17] Smirnov, S. (2001). Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Ser. I Math, 333, 239-244. [DOI:10.1016/S0764-4442(01)01991-7]
18. [18] Stauffer, D., Aharony, A. (1994). Introduction to percolation theory. Taylor and Francis, London.
19. [19] Harris, T.E. (1960). A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc, 13-20. [DOI:10.1017/S0305004100034241]
20. [20] Vahidi-Asl, M.Q., Wierman, J.C. (1990). First-passage percolation on the Voronoĭ tessellation and Delaunay triangulation. In Random Graphs '87 (Poznań, 1987). Wiley, 341-359.
21. [21] Vahidi-Asl, M.Q., Wierman, J.C. (1992). A shape result for first-passage percolation on the Voronoĭ tessellation and Delaunay triangulation. In Random Graphs, 2 (Poznań, 1989). Wiley, 247-262.
22. [22] Vahidi-Asl, M.Q., Wierman, J.C. (1993). Upper and lower bounds for the route length of first-passage percolation in Voronoĭ tessellations. Bull. Iranian Math. Soc. 19, 15-28.
23. [23] Zvavitch, A. (1996). The critical probability for Voronoi percolation. MSc. thesis, Weizmann Institute of Science, available from http://www.math.kent.edu/ zvavitch/master−version−dvi.zip.


XML   Persian Abstract   Print



Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 26, Issue 2 (3-2022) Back to browse issues page