1. [1] Belavin, A.A., Polyakov, A.M., Zamolodchikov A.B. (1984). Infinite conformal symmetry of critical fluctuations in two dimensions. J. Statist. Phys, 34, 763-774. [ DOI:10.1007/BF01009438] 2. [2] Benjamini, I., Schramm, O. (1996). Percolation beyond Zd, many questions and a few answers. Electron. Comm. Probab, 1(8), 41-59. [ DOI:10.1214/ECP.v1-978] 3. [3] Bollobas, B., Riordan, O. (2006). The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theor. Rel. Fields, 136(3), 417-468. [ DOI:10.1007/s00440-005-0490-z] 4. [4] Bollobas, B., Riordan. O. (2012). Percolation. Cambridge University Press. 5. [5] Broadbent, S.R., Hammersley, J.M. (1957). Percolation processes. I. crystals and mazes. Proc. Cambridge Philos. Soc, 53, 629-641. [ DOI:10.1017/S0305004100032680] 6. [6] Camia, F., Newman, C. (2006). Two-dimensional critical percolation: the full scaling limit. Comm. Math. Phys, 268(1), 1-38. [ DOI:10.1007/s00220-006-0086-1] 7. [7] Duminil-Copin, H. (2017). Sixty years of percolation, arxiv:1712.04651v1. 8. [8] Kesten, H. (1980). The critical probability of bond percolation on the square lattice equals 1/2. Comm. Math. Phys, 41-59. [ DOI:10.1007/BF01197577] 9. [9] Haggstrom, O., Peres, Y. and Steif, J. (1997). Dynamical percolation. Ann. Inst. H. Poincare Probab. Statist, 33, 497-528. [ DOI:10.1016/S0246-0203(97)80103-3] 10. [10] Hansen, B.T., Muller, T. (2021). Poisson-Voronoi percolation in the hyperbolic plane with small intensities, arXiv:2111.04299v2. 11. [11] Cardy, J.L. (1992). Critical percolation in finite geometries. J. Phys. A, 25, L201-L206. [ DOI:10.1088/0305-4470/25/4/009] 12. [12] Duminil-Copin, H. (2017). Lectures on the Ising and Potts models on the hypercubic lattice, arXiv:1707.00520. 13. [13] Mello, I.F., Squillante, L., Gomes, G.O., Seridonio, A.C., and Souza, M. (2021). Epidemics, the Ising-model and percolation theory: a comprehensive review focussed on covid-19. Physica A, 1-33. [ DOI:10.1016/j.physa.2021.125963] 14. [14] Morio, J., Balesdent, M. (2016). Estimation of rare event probabilities in complex aerospace and other systems: a practical approach. J. Mach. Lear. Res, 2825-2830. 15. [15] Pedregosa, F., Varoquaux, G., Gramfort, A., , Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E. (2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res, 12, 2825-2830. 16. [16] Smirnov, S. private communications. 17. [17] Smirnov, S. (2001). Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits. C. R. Acad. Sci. Paris Ser. I Math, 333, 239-244. [ DOI:10.1016/S0764-4442(01)01991-7] 18. [18] Stauffer, D., Aharony, A. (1994). Introduction to percolation theory. Taylor and Francis, London. 19. [19] Harris, T.E. (1960). A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc, 13-20. [ DOI:10.1017/S0305004100034241] 20. [20] Vahidi-Asl, M.Q., Wierman, J.C. (1990). First-passage percolation on the Voronoĭ tessellation and Delaunay triangulation. In Random Graphs '87 (Poznań, 1987). Wiley, 341-359. 21. [21] Vahidi-Asl, M.Q., Wierman, J.C. (1992). A shape result for first-passage percolation on the Voronoĭ tessellation and Delaunay triangulation. In Random Graphs, 2 (Poznań, 1989). Wiley, 247-262. 22. [22] Vahidi-Asl, M.Q., Wierman, J.C. (1993). Upper and lower bounds for the route length of first-passage percolation in Voronoĭ tessellations. Bull. Iranian Math. Soc. 19, 15-28. 23. [23] Zvavitch, A. (1996). The critical probability for Voronoi percolation. MSc. thesis, Weizmann Institute of Science, available from http://www.math.kent.edu/ zvavitch/master−version−dvi.zip.
|