1. [1] Ahsanullah, Mohammad and Nevzorov, Valery and Shakil, Mohammad (2013). An intoduction to order statistics, Springer. [ DOI:10.2991/978-94-91216-83-1] 2. [2] Barry, C. A., Balakrishnan, N. and Nagaraja, N. H. (2011). Records, John wiley & Sons. 3. [3] Barry, C. A., Balakrishnan, N. and Nagaraja, N. H. (2008). A first course in order statistics, SIAM. 4. [4] Bairamov, I. and Tavangar, M. (2015). Residual lifetomes of k-out-of-n systems with exchangeable components. Journal of the Iranian Statistical Society, 14(1), 63-87. 5. [5] Balakrishnan, N. Bendre, S. M., and Malik. H. J (1992). General relations and identities for order statostics from nonindependent non-identical variables. Annals of the Institute of Statistical Mathematics, 44(1), 177-183. [ DOI:10.1007/BF00048680] 6. [6] Balakrishnan, N., Zhao, P. (2013). Ordering properties of order statistics from heterogeneus population: a review with an emphasis on some recent developments. Probability in the Engineering and Informational Sciences, 27(4), 403. [ DOI:10.1017/S0269964813000156] 7. [7] Bayramoglu, I. (2018). A note on the ordering of distribution functions of inid random variables.Journal of Computational and Applied Mathematics, 343, 49-54. [ DOI:10.1016/j.cam.2018.03.042] 8. [8] Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data.Machine learning, 9(4), 309-347. [ DOI:10.1007/BF00994110] 9. [9] David, H. A., Nagaraja, N. H. (2004). Order statistics. Encyclopedia of statistical sciences. [ DOI:10.1002/0471667196.ess6023] 10. [10] Heckerman, D. (1998). A tutorial on learning with Bayesian networks. Springer Netherlands. [ DOI:10.1007/978-94-011-5014-9_11] 11. [11] Hogg, V. R., McKean, J., and Craig, T. A. (2005). Introduction to mathematical statistics, Pearson Education. 12. [12] Kazempoor, J., Habibrad. A., and Okhli, KH. (2020). Bounds for cdfs of order statistics arising from inid random variables. Journal of the Iranian Statistical Society, 19(1), 39-57. [ DOI:10.29252/jirss.19.1.39] 13. [13] Kelkinnama, M., Tavangar, M., and Asadi, M. (2015). New developments on stachastic properties of coherent systems. IEEE Transactions on Reliability, 64(4), 1276-1286. [ DOI:10.1109/TR.2015.2431682] 14. [14] Likes, J. (1967). Distributions of some statistics in samples from exponential and power-function populations. Journal of the American Statistical Association, 62(317), 259-271. [ DOI:10.2307/2282928] 15. [15] Malmquist, S. (1950). On a property of order statistics from a rectangular distribution. Scandinavian Actuarial Journal, (3-4), 214-222. [ DOI:10.1080/03461238.1950.10432043] 16. [16] Salehi, E., Tavangar, M. (2019). Stochastic comparisons on conditional residual lifetime and inactivity time of coherent systems with exchangeable components. Statistics & Probability Letters, 145, 327-337. [ DOI:10.1016/j.spl.2018.10.007] 17. [17] Scheffe. H., Tukey, W. J., and et al. (1945). Non-parametric estimation. I. Validation of order statistics. The Annals of Mathematical Statistics, 16(2), 187-192. [ DOI:10.1214/aoms/1177731119] 18. [18] Zhao, P., Li, X. (2009). Stochastic order of sample range from heterogeneous exponential random variables. Probability in the Engineering and Informational Sciences, 23(1), 17. [ DOI:10.1017/S0269964809000023] 19. [19] Zhao, P., Zhang, Y. (2012). On sample ranges in multiple-outlier models. Journal of Multivariate Analysis, 111, 335- 349. [ DOI:10.1016/j.jmva.2012.04.010]
|