In this research, the aim is to assess and analyze a method to predict the stock market. However, it is not easy to predict the capital market due to its high dependence on politics but by data modeling, it will be somewhat possible to predict the stock market in the long period of time. In this regard, by using the semi-parametric regression models and support vector regression with different kernels and measuring the predictor errors in the stock market of one stock based on daily fluctuations and comparing methods using the root of mean squared error and mean absolute percentage error criteria, support vector regression model has been the most appropriate fit to the real stock market data with radial kernel and error equal to 0.1.
Type of Study: Applicable |
Subject: Special Received: 2021/07/4 | Accepted: 2022/03/30 | Published: 2022/09/8
References
1. روزبه، م. و امینی، م. ( ١٣٩٨ )، برآوردگر استوار مرزبندی شده تعمیم یافته محتمل در مدل رگرسیون نیمه پارامتری، مجله علوم آماری، ١٣، .۴۴١ -۴۶٠
2. [2] Amini, M. and Roozbeh, M. (2015), Optimal partial ridge estimation in restricted semiparametric regression models, Journal of Multivariate Analysis, 136, 26-40. [DOI:10.1016/j.jmva.2015.01.005]
3. [3] Araújo, R. D. A., Oliveira, A. L. and Meira, S. (2015), A hybrid model for high-frequency stock market forecasting, Expert Systems with Applications, 42, 4081-4096. [DOI:10.1016/j.eswa.2015.01.004]
4. [4] Blanchflower, D. G. and Oswald, A. J. (1994), The wage curve, MIT press.
5. [5] Choudhury, S., Ghosh, S., Bhattacharya, A., Fernandes, K. J. and Tiwari, M. K. (2014), A real time clustering and SVM based price-volatility prediction for optimal trading strategy, Neurocomputing, 131, 419-426. [DOI:10.1016/j.neucom.2013.10.002]
6. [6] Dash, R. and Dash, P. K. (2016), A hybrid stock trading framework integrating technical analysis with machine learning techniques, The Journal of Finance and Data Science, 2, 42-57. [DOI:10.1016/j.jfds.2016.03.002]
7. [7] Engle, R. F., Granger, C. W. J., Rice, J. and Weiss, A. (1986), Semiparametric Estimates of the Relation Between Weather and Electricity Sales, Journal of the American Statistical Association, 81, 310-320. [DOI:10.1080/01621459.1986.10478274]
8. [8] Fama, E. (1970), Efficient capital markets: A review of theory and empirical work, The journal of Finance, 25, 383-417. [DOI:10.1111/j.1540-6261.1970.tb00518.x]
9. [9] Gerlein, E. A., McGinnity, M., Belatreche, A. and Coleman, S. (2016), Evaluating machine learning classification for financial trading: An empirical approach, Expert Systems with Applications, 54, 193-207. [DOI:10.1016/j.eswa.2016.01.018]
10. [10] Kao, L. J., Chiu, C. C., Lu, C. J., and Yang, J. L. (2013), Integration of nonlinear independent component analysis and support vector regression for stock price forecasting, Neurocomputing, 99, 534-542. [DOI:10.1016/j.neucom.2012.06.037]
11. [11] Manahov, V., Hudson, R. and Gebka, B. (2014), Does high frequency trading affect technical analysis and market efficiency and if so, how Journal of International Financial Markets, Institutions and Money, 28, 131-157. [DOI:10.1016/j.intfin.2013.11.002]
12. [12] Nayak, R. K., Mishra, D. and Rath, A. K. (2015), A naïve svm-knn based stock market trend reversal analysis for indian benchmark indices, Applied Soft Computing, 35, 670-680. [DOI:10.1016/j.asoc.2015.06.040]
13. [13] Patel, J., Shah, S., Thakkar, P. and Kotecha, K. (2015), Predicting stock market index using fusion of machine learning techniques, Expert Systems with Applications, 42, 2162-2172. [DOI:10.1016/j.eswa.2014.10.031]
14. [14] Roozbeh, M. (2015), Shrinkage ridge estimators in semiparametric regression models, Journal of Multivariate Analysis. 136, 56-74. [DOI:10.1016/j.jmva.2015.01.002]
15. [15] Roozbeh, M. (2018), Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion, 117, Computational Statistics & Data Analysis. 117, 45-61. [DOI:10.1016/j.csda.2017.08.002]
16. [16] Roozbeh, M. and Arashi, M. (2013), Feasible ridge estimator in partially linear models, Journal of Multivariate Analysis. 116, 35-44. [DOI:10.1016/j.jmva.2012.11.006]
18. [18] Willis, R. J. (1986), Wage determinants: A survey and reinterpretation of human capital earnings functions. Handbook of labor economics, 1, 525-602. [DOI:10.1016/S1573-4463(86)01013-1]
19. [19] Xiao, Y., Xiao, J., Lu, F. and Wang S. (2014), Ensemble anns-pso-ga approach for day-ahead stock e-exchange prices forecasting, International Journal of Computational Intelligence Systems, 7, 272-290. [DOI:10.1080/18756891.2013.864472]
Roozbeh M, Rouhi A, Jahadi F, Zalzadeh S. Support Vector Machines Regression Model and Comparison with Semi-parametric Regression. Andishe 2022; 26 (2) :21-32 URL: http://andisheyeamari.irstat.ir/article-1-858-en.html