حجم نمونه بیزی برای برآورد پارامتر نسبت دو جمله‌ای با استفاده از ناحیه‌های p-تحمیل با کمترین زیان پسین

حسین بورلی و ترگس نجفی

چکیده:
این مقاله با استفاده از ناحیه‌های p-تحمیل با کمترین زیان پسین، تابع زیان درجه دو و استفاده از روش متوسط نقطه و پارامتر برآمده به محاسبه اندازه نمونه برای برآورد نسبت در تابع احتمال دو جمله‌ای با توزیع پیشین با می‌پردازد.

واژه‌های کلیدی: استنباط بیزی، تابع زیان درجه دو، توزیع پیش‌موعدی، ناحیه‌های p-تحمیل با کمترین زیان پسین (LPL)

۱ مقدمه

برآورد حجم نمونه از سوالاتی است که بسیاری از مواقع و به ویژه در طرح‌های پژوهشی و کاربردی با آن رویه می‌گیرد. اخیراً برای برآورد حجم نمونه بیزی روشهای مختلفی پیشنهاد شدند. انسیگن هالنر و ویلمین (۱۹۶۹) انلیگن هالنر و همکاران (۱۹۶۱) نگرش بیزی را برای پیشینی ارزیاب نمونه فرض آکوک و فام-گاوا و ترکل (۱۹۷۰) برای برآورد فاصله‌ای پیشین این تقسیم‌بندی نرمال برای چگالی‌های پسین برآورد میانگین‌ها و مرتبه‌های پسین به کار برده‌شد. پسین برای آقایان از این فاصله برآورد حجم نمونه انجام استنباط با اخذ تصمیم‌گیری در مورد پارامتر معنی‌دار در

bevami@tabrizmu.ac.ir
narges.najafj@yahoo.com

1 و 2 عضو هیئت علمی گروه آمار فنی شناسی به‌عنوان

Lowest posterior loss
Spiegelhalter
Freedman
Acock
Pham Gia
Tinklehaus
Desu
Raghavamoorthi

Downloaded from andisheyeamari.irstat.ir at 22:07 +0330 on Friday November 8th 2019
2 روش‌های اندازه‌گیری نمونه‌ی بیزی برای نسبت دوجمله‌ای

فرض کنید متغیر تصادفی X از توزیع دوجمله‌ای با پارامترهای n و θ بیشینده است. همچنین فرض کنید θ از توزیع پیشین $\pi(\theta) = Be(\alpha, \beta)$ پیشین با پارامترهای α و β است. با استفاده از قضیه‌ی بیز، توزیع پیشین $\pi(\theta | x, n, \alpha, \beta) = Be(\theta | x + \alpha, n - x + \beta)$ را برای مقدار مشاهده X توزیع تابع‌جوش جمله‌ای خواهد بود که به صورت زیر تعریف می‌شود:

$$P_X(x | n, \alpha, \beta) = \binom{n}{x} \frac{B(x + \alpha, n - x + \beta)}{B(\alpha, \beta)}; \quad x = 0, 1, 2, \ldots, n,$$

که در آن $\Gamma(\alpha)\Gamma(\beta)\Gamma(\alpha + \beta)$، ابست. در تابع پیشین با پارامترهای α و β به دست می‌آید. بخش دو به توابع بیژی برای پارامتر θ و n تابع احتمال دوجمله‌ای با پارامترهای θ و x توزیع $\pi(\theta | x, n, \alpha, \beta)$، به دست می‌آید. بخش سوم به توابع بیژی برای پارامتر θ و n تابع احتمال دوجمله‌ای با استفاده از ناحیه‌های p تحلیل بایکمترین پیشین ناحیه‌ای با احتمال p می‌شود.
است که شامل مقادیری از $\delta(x)$ می‌باشد که زبان مورد
انتظار $E[\theta(x)]$ برای آنها کمتر از زبان مورد
انتظار برای مقادیر $\delta(x)$ است. در این مورد
$\delta(x) = (\delta(x) - \theta)^+$ ناشی از نیاز دوم
شکنارش را به صورت زیر تعیین می‌نماید:

$$R(\delta(x)) = \int_{\Theta} I(\theta, \delta(x)) \pi(\theta \mid x) \, d\theta.$$

در این صورت ناپایداری p تحقیق با کمترین زبان
پسین در این پارامتر دو جمله‌ای، زیرمجموعه‌ای به صورت
$R_\delta = R_\delta(x, \theta)$ از فضای پارامتر است هر گاه داشته
باشیم:

1) $\int_{R_\delta} Be(\theta \mid x + \alpha_n x - x + \beta) \, d\theta = p,$

2) $R(\theta) \leq R(\theta'), \forall \theta \in R_\delta,$ \quad $\forall \theta' \notin R_\delta,$

که در آن

$$R(\delta(x)) = \int_{\Theta} Be(\theta \mid x + \alpha_n x - x + \beta) \, d\theta,$$

$\text{LPL}_L(x, n, \alpha, \beta, I) = (l, g)'((l, g) \leq (h, g))$ که
مطابق با ناحیه‌ای با کمترین زبان
پسین برای θ با در نظر گرفتن طول p برای فاصله
ناپایداری با کمترین زبان پسین $\text{LPL}_C(x, n, \alpha, \beta, p)$
برای θ با در نظر گرفتن احتمال پوشش p باشد، تعريف
می‌نماید:

$$\ell_q(x, n) = \int_{\text{LPL}_C(x, n, \alpha, \beta, p)} d\theta,$$

$\text{Average length criterion}$
$\text{Average coverage criterion}$
4.2 ملاک بندترین برآمد (WOC)

دروغ WOC، ACC و ALC، طول و بیشتر را به طور متوسط بررسی می‌کند. این روش ها هیچ‌گونه ضمانتی روی تک تک مشاهدات ندارند. روش محاسبه‌کردن دیگری که به ما این اطمینان را می‌دهد که طول و احتمال بیوشر مورد نظر و مطلوب روی تک تک مشاهدات برقرار نباشد، روش بندترین برآمد است. این روش کمترین مقدار را برای n به‌گونه‌ای می‌یابد که داشته باشیم:

$$\inf_{\beta, n} \left[\int_{L}(\theta|z, x, \alpha, \beta) \pi(\theta) d\theta \right] \geq p,$$

که در آن π مقدار نیایی هستند [1].

3. شیوه‌سازی

برای توزیع پیشین با $\beta = 1$, $\alpha = 2$, $\pi(x, y)$ ریسک پسین در نمودار (1)، ناحیه‌ی با کمترین زیان پسین در نمودار (2) نشان داده شده است. همان‌گونه که در این نمودارها مشاهده می‌شود الگوریتم کلی برای بدست آوردن ناحیه‌ی با کمترین زیان پسین بدين صورت است که مقدار دلتا را ریسک پسین را به‌گونه‌ای می‌یابد تا ریسک پسین نتایج داخل این ناحیه

Worst outcome criterion\(^{\circ}\)
سپاسگزاری
نویسنده‌گان از داوران محترم که پیشنهادات ارزش‌آمیزی‌هایی بهبود این مقاله گردیدند، تشکر و قدردانی می‌نمایند.

مراجع

پیوست‌ها

جدول 1. اندازه‌ی نمونه‌ی بزی به روش ACC بر حسب طول و احتمالات بیشتر مختلف با یکی از 1 = 1 = \(\alpha = 0.001 \)

<table>
<thead>
<tr>
<th>(l)</th>
<th>0/4</th>
<th>0/5</th>
<th>0/6</th>
<th>0/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 2. اندازه‌ی نمونه‌ی بزی به روش ALC بر حسب طول و احتمالات بیشتر مختلف با یکی از 1 = 0.001

<table>
<thead>
<tr>
<th>(l)</th>
<th>0/4</th>
<th>0/5</th>
<th>0/6</th>
<th>0/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 3. اندازه‌ی نمونه‌ی بزی به روش WOC بر حسب طول و احتمالات بیشتر مختلف با یکی از 1 = 0.001

<table>
<thead>
<tr>
<th>(l)</th>
<th>0/4</th>
<th>0/5</th>
<th>0/6</th>
<th>0/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
شکل 1. ریسک پسین برای پارامتر دوجمله‌ای با $\alpha = 1 = \beta$.

شکل 2. فاصله‌ی تحمل 95% با کمترین زیان پسین برای پارامتر دوجمله‌ای با $\alpha = 1 = \beta$.
شکل ۳. حجم نمونه با سه مالک برای احتمالات بیشتر مختلف و $\theta/2 = 1$.\\

شکل ۴. حجم نمونه با سه مالک برای طول‌های مختلف و $\theta/2 = 2$.\