توزیع نیمه لجستیک

اکبر اصغرزاده، صدیقه رحمی پور

چکیده:
در این مقاله، ابتدا توزیع نیمه لجستیک معرفی و درآمدهای گشتاورها، ضایعات جولگی و کشیدگی این توزیع محاسبه می‌شود. روش ماکزیمم درستنمایی جواب صریحی را برای برآورد پارامترن مفیلس این توزیع در اختیار ما می‌گذارد. با تقریب معادله درستنمایی، یک جواب تقریبی برای این پارامتر مقداری دارد که می‌تواند برای در این پارامتر مقداری دارد که می‌تواند برای در

واژه‌های کلیدی: توزیع نیمه لجستیک، ضایعات جولگی، برآورد، MLE، برآورد گشتاوری.

1 مقدمه
توزیع نیمه لجستیک، یک توزیع مهم و شناخته شده در آزمون طول عمر و قابلیت اعتمادی می‌باشد. هر گزینه‌ی مشاهده می‌شود که با تابع اکیدا نزولی از x به دنبال طولانی به سمت راست می‌باشد. همچنین تابع خطر این توزیع بر

\[f(x) = \frac{\gamma e^{-\gamma x}}{(1 + e^{-\gamma})^\gamma} \quad x \geq 0 \]

خواهد بود. نمودارهای f(x) و F(x) به ترتیب در شکل‌های 1 و 2 رسم شده‌اند. هم‌ناپارسه مشاهده می‌شود که تابع اکیدا نزولی از x به دنبال طولانی به سمت راست می‌باشد. به همین‌طور نتایج ۵ این توزیع بر

\[G(y, \mu, \sigma) = \frac{2 e^{-\frac{y-\mu}{\sigma}}}{\sigma(1 + e^{-\frac{y-\mu}{\sigma}})} \quad y \geq \mu \]

و تابع توزیع

\[h(x) = \frac{f(x)}{1 - F(x)} = \frac{1}{1 + e^{-\gamma}} \]

\[\gamma \to \infty \]

یک تابع اکیدا صعودی از x به دنبال گنگی که به یک توزیع می‌شود. بنابراین این توزیع دارای نرخ می‌باشد که برای مقدار می‌باشد [۵].

باشند که \(\mu \in \mathbb{R} \) مثل پارامتر مکان و \(\sigma > 0 \) پارامتر می‌باشد.

\[X = (Y - \mu)/\sigma \] است. در نتیجه، در آن صورت x دارای توزیع نیمه لجستیک

\[\text{Half-logistic distribution} \]

\[\text{Life time-testing} \]

\[\text{Reliability} \]

\[\text{Hazard function} \]
توزیع نیمه لجستیک

خطر صعودی است. بعنوان یک مورد برای اساس توزیع نیمه لجستیک
می‌تواند به عنوان یک مدل طول عمر در آزمون‌های طول
عمر مشابه گردید [3]. شکل 3 نمودار تابع خطر (را
نشان می‌دهد.

2 گشتاورها، ضرایب چیلوگی و
کشیدگی

گشتاور مرتبه اول توزیع نیمه لجستیک به یک انگرال
ساده به صورت زیر بوده است:

\[E(X) = \int_{0}^{\infty} x \cdot e^{-x} \left(1 + e^{-x}\right)^{-\gamma} \, dx \]

\[= \frac{\gamma}{\gamma - 1} \quad (\gamma > 1) \]

در این کردن گشتاورهای بالاتر به صورت زیر می‌توانند
برای مثال:

\[E(X^m) = \int_{0}^{\infty} x^m \cdot e^{-x} \left(1 + e^{-x}\right)^{-\gamma} \, dx \]

\[= \frac{\gamma m}{\gamma - m} \quad (m = 1, 2, 3, \ldots) \]

در حالی که نتیجه گشتاورهای فرد به طور مشابه بصورت زیر می‌باشد:

\[m = 1, 2, 3, \ldots \]

\[E(X^m) = \int_{0}^{\infty} x^m \cdot e^{-x} \left(1 + e^{-x}\right)^{-\gamma} \, dx \]

\[= \frac{\gamma m}{\gamma - m} \quad (m = 1, 2, 3, \ldots) \]

در حالی که نتیجه گشتاورهای فرد به طور مشابه بصورت زیر می‌باشد:

\[E(X^m) = \int_{0}^{\infty} x^m \cdot e^{-x} \left(1 + e^{-x}\right)^{-\gamma} \, dx \]

\[= \frac{\gamma m}{\gamma - m} \quad (m = 1, 2, 3, \ldots) \]

\[E(X^m) = \frac{\gamma m}{\gamma - m} \quad (m = 1, 2, 3, \ldots) \]
گشتاور مکرر مربوط به توزیع نیمه لجستیک عبارت است از:

\[M_X(t) = \int_{0}^{\infty} \frac{2e^{-x}e^{-t}}{(1 + e^{-x})^2} dx \]

\[= 2 \int_{0}^{1} u'(1-u)^{-1} du \quad (u = (1 + e^{-x})^{-1}) \]

\[= 2 \Gamma(1 + t) \Gamma(1 - t) - 2B(\frac{1}{2}, 1 + t, 1 - t) \]

که در آن \(B(x, \alpha, \beta) \) تابع بانهای ناقص بوده و بصورت زیر تعیین می‌شود:

\[B(x, \alpha, \beta) = \int_{0}^{x} t^{\alpha-1}(1-t)^{\beta-1} dt \]

\[\beta_n = E(X - E(X))^n = \sum_{k=0}^{n} \binom{n}{k} E(X^k) (-E(X))^{n-k} \]

در حالت خاص دارد:

\[\beta_n = \sigma^n = \frac{\pi^n}{\lambda^n} - (\ln \lambda)^n \]

از گشتاورهای مركبی فوق می‌توان ضرایب جولگی و کشیدگی را محاسبه کرد.

ضرایب جولگی \(\gamma_1 \) برای استادی است:

\[\gamma_1 = \frac{\beta_3}{\sigma^3} = \frac{\beta_3}{\beta_1^3} \equiv 1/529 \]

بر این اساس توزیع نیمه لجستیک یک توزیع جولگی به راست می‌باشد.

ضرایب کشیدگی \(\gamma_2 \) می‌شود:

\[\gamma_2 = \frac{\beta_4}{\sigma^4} = \frac{\beta_4}{\beta_1^4} \equiv 7/1228 \]

ولذا توزیع نیمه لجستیک در مقایسه با توزیع نمایی استاندارد کشیده‌تر با به عبارتی بیشتر می‌باشد. در شکل ۴ دو تابع جولگی نمای استاندارد و تابع جولگی نیمه لجستیک استاندارد باهم رسم شده‌اند، که حقایق فوق آشکارا دیده می‌شود.

\(\gamma_1 \) Coefficient of Skewness
\(\gamma_2 \) Coefficient of Kurtosis
1.4 روش گشتاوری

با توجه به اینکه متغیر تصادفی در دایر X = (Y - μ)/σ در این توزیع نیمه لوژنتری است با توجه به اینکه متغیر تصادفی نیمه لوژنتری است، گشتاورهای اول و دوم را می‌توان بصورت زیر محاسبه کرد:

\[E(Y) = \mu + \sigma E(X) = \mu + \sigma \ln \frac{\gamma}{4} \]

\[E(Y^r) = E(\mu + \sigma X)^r = \mu^r + 4r \sigma \mu \ln \frac{\gamma}{4} + \frac{\sigma^2 \pi^2}{3} \]

از حل دستگاه معادلات

\[E(Y^r) = \bar{y}^r \quad \text{و} \quad E(Y) = \bar{y} \]

برآوردهای گشتاوری با بطور زیر بدست می‌آیند:

\[\hat{\mu} = \bar{y} - \ln \frac{\bar{y}^r - \bar{y}^r}{\pi^2 - (\ln \frac{\gamma}{4})^2} \quad \text{و} \quad \hat{\sigma} = \sqrt{\frac{\bar{y}^r - \bar{y}^r}{\pi^2 - (\ln \frac{\gamma}{4})^2}} \]

2.4 روش ماکزیمم درستنمایی

تابع درستنمایی نمونه عبارت است از:

\[L(\mu, \sigma) = \frac{\gamma^n \sigma^{-n}}{\prod_{i=1}^{n} (1 + e^{-\frac{y_i - \mu}{\sigma^2}})^{-1}} \quad \mu \leq y_{(1)} \]

که کوچکترین عنصر نمونه \(y_{(1)} = \min(y_1, y_2, \ldots, y_n) \) است، با توجه به اینکه یک نتایج اگدا صعودی از

\[L(\mu, \sigma) = \frac{\gamma^n \sigma^{-n}}{\prod_{i=1}^{n} (1 + e^{-\frac{y_i - \mu}{\sigma^2}})^{-1}} \quad \mu \leq y_{(1)} \]

است لذا برآورد ماکزیمم درستنمایی (MLE) عبارت است از:

\[\hat{\mu} = y_{(1)} \]

2.3 ارتباط با توزیع گاما

اگر متغیر تصادفی \(V \) در دایر توزیع نیمه لوژنتری با نام باشند، در حالی که متغیر تصادفی \(V \), در دایر توزیع گاما با دو درجه آزادی با توزیع نمایی با میانگین دو \(\theta \) خواهد بود.

\[\frac{1}{\theta} = \theta = \theta \]

2.3 ارتباط با توزیع وایبل

اگر متغیر تصادفی \(V \) در دایر توزیع نیمه لوژنتری با نام باشند، در حالی که متغیر تصادفی \(V \), در دایر توزیع گاما با دو درجه آزادی با توزیع نمایی با میانگین دو \(\theta \) خواهد بود.

\[W = \ln \left(\frac{1 + \frac{1}{\gamma}}{\frac{\gamma}{4}} \right) \]

عبارت است از:

\[f(w) = \frac{1}{\theta} w^\alpha e^{-\frac{w}{\theta}} \]

به عنین دایر توزیع وایبل با پارامترهای \(\alpha \) و \(\beta \) است. با توجه به ارتباط توزیع وایبل و وایبول در حالی

\[\frac{1}{\theta} = \theta \]

\[f(w) = \frac{1}{\theta} w^\alpha e^{-\frac{w}{\theta}} \]

4. برآورد پارامترها

فرض کنید یک نمونه تصادفی از توزیع نیمه لوژنتری با پارامترهای \(\mu \) و \(\sigma \) باشد. برای برآورد

\[\mu \]

\[\sigma \]

از جنگین روش استفاده می‌کنیم:
معادله درست‌نمایی فوق بخاطر حضور جمله $E(x_i) = \ln \sigma$ حالت σ به دست نمی‌دهد. با استفاده توابع $F(x_i)$ جواب صریحی را برای x_i به دست می‌دهد. برای مثال تابع β روح روش تقریبی، می‌توان به مراجعه [12و3] و نگه داشتن دو جمله اول آن دریم:

$$F(x_i) = F(\ln x_i) + (x_i - \ln x_i) f(\ln x_i) = \alpha + \beta x_i$$

که در آن

$$\alpha = F(\ln x_i) - \ln x_i f(\ln x_i) = \frac{3}{\sigma} - \frac{\ln x_i}{\sigma}$$

$$\beta = f(\ln x_i) = \frac{\ln x_i}{\sigma}$$

از تقریب فوق، معادله مکزیمیم درست‌نمایی را می‌توان بصورت زیر نوشت:

$$\frac{d}{d\sigma} \ell(\mu, \sigma) = -\frac{n}{\sigma} + \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \mu) x_i$$

$$= -\frac{n}{\sigma} + \frac{\alpha}{\sigma} \sum_{i=1}^{n} x_i + \beta \sum_{i=1}^{n} x_i$$

$$= -\frac{n}{\sigma} + \frac{\alpha}{\sigma} \sum_{i=1}^{n} (y_i - y_i) + \beta \sum_{i=1}^{n} (y_i - y_i)x_i$$

از معادله فوق، چنین جمله‌ای در جمله دو زیر بررسی

$$\sigma = \sqrt{n\sigma^2 - \alpha \sum_{i=1}^{n} (y_i - y_i)x_i - \beta \sum_{i=1}^{n} (y_i - y_i)x_i}$$

با جایگذاری μ به جای μ و مشتق گذیری از لگاریتم نام

درست‌نمایی داریم:

$$\frac{d}{d\sigma} \log L(\mu, \sigma) = -\frac{n}{\sigma} + \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \mu)$$

$$- \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \mu)(y_i - \mu)x_i$$

که جواب صریحی برای σ به دست نمی‌آید. بنابراین برای پیدا کردن σ به روش‌های عدید استفاده کرد.

۲.۴ تقریب مکزیمیم درست‌نمایی

همانطور که مشاهده شد، روش مکزیمیم درست‌نمایی، جواب صریحی را برای μ به دست نمی‌دهد. در اینجا یک روش ساده برای پیدا کردن μ نامیم که تقریبی، با تقریب نام دست‌نمایی مکزیمیم ارائه می‌شود.

از تبدیل لجستیک را بصورت زیر نوشته:

$$g(y_i, \mu, \sigma) = \frac{1}{\sigma} f(x_i)$$

که در آن $f(x_i)$ نام دست‌نمایی لجستیک استاندارد است. با توجه به این تابع درست‌نمایی نمونه می‌شود:

$$L(\mu, \sigma) = \prod_{i=1}^{n} g(y_i, \mu, \sigma) = \sigma^{-n} \prod_{i=1}^{n} f(x_i)$$

لگاریتم نام درست‌نمایی می‌شود:

$$\ell(\mu, \sigma) = -n \ln \sigma + \sum_{i=1}^{n} \ln f(x_i)$$

با مشتق گذیری نسبت به σ خواهیم داشت:

$$\frac{d}{d\sigma} \ell(\mu, \sigma) = -\frac{n}{\sigma} + \frac{1}{\sigma^2} \sum_{i=1}^{n} x_i F(x_i)$$
ازحل معادله فوق برآورد MLE برای σ به صورت زیر حاصل می‌شود:

\[
\hat{\sigma} = \frac{B + \sqrt{B^2 + 4AC}}{2A}
\]

که در آن

\[
A = n, \quad B = \sum_{i=1}^{n} (y_i - \mu), \quad C = \beta \sum_{i=1}^{n} (y_i - \mu)^2
\]

ذکر این نکته ضروری است که معادله درجه دوم فوق دو ریشه دارد که یکی از آنها قابل قبول نیست چون \(C > 0 \) است.

برآورد MLE تقریبی که برای \(\sigma \) از آنها شده است، می‌تواند مقدار اولیه خوبی برای حل تکراری معادله درست شود.

(1) به روش های آنالیز عدیدی باشد.

5 محاسبات عددی

در این بخش، به منظور بحث و مقایسه روش‌های برآورد MLE نقاط بهتر بهترین مقداری از معادله شیب سازی ارائه می‌شود.

1.5 مثل عددی

با استفاده از روش مونت کارلو، نمونه‌های به اندازه 15 از توزیع نیمه لجستیک استاندارد تولید کرده‌اند. این نمونه‌ها عبارتند از:

<table>
<thead>
<tr>
<th>simul4-function(n)</th>
<th># This program obtain MSE the moment and approximate of sigma # based on</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6847 0.4411 3.2591 0.2664 0.8243 1.94267 0.2281 0.8848 1.6586 1.5525 0.4979 0.0795 1.0578 1.2764 1.0354</td>
<td></td>
</tr>
</tbody>
</table>

از دسته آماری SPLUS استفاده شده است که برنامه مربوطه در زیر آمده است:

جدول ۱

<table>
<thead>
<tr>
<th>جدول ۱ برآورد MLE</th>
<th>MSE(σ)</th>
<th>MSE(σ)</th>
<th>MSE(σ)</th>
<th>MSE(σ)</th>
<th>MSE(σ)</th>
<th>MSE(σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۵</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
</tr>
<tr>
<td>۲۰</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
</tr>
<tr>
<td>۲۵</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
<td>۴/۷۷۴۴</td>
</tr>
</tbody>
</table>

برای اندازه‌گیری شیب سازی و محاسبه مقادیر جدول ۱ از نسخه آماری SPLUS استفاده شده است که برنامه

| می‌شود که با افزایش اندازه نمونه، مقادیر می‌گذارد چنین مشاهده می‌کنیم.
10000 simulated random samples in the standard half logistic dist.

```r
C <- (8/25)*sum(x^2)
sigma[i] <- -(B + sqrt((B^2) + (4*A*C)))/(2*A)
mu[i] <- sigma[i]-1/2
gamma[i] <- sqrt((mean(x^2) - (mean(x)^2))/(3.14))/
(2/3-(log(4))/2))
g[i] <- gamma[i]-1/2

for (i in 1:10000) {
  u <- runif(1)
x <- log((1+u)/(1-u))
A[i] <- B_(3/5)-(8/25)*(log(4)))*sum(x)
```

Shape 1: Name `C(ga) N` Hermite
شکل ۲: تابع توزیع تجمعی نیمه لجستیک

شکل ۳: نمودار تابع خطر \(h(x) \)
شکل 4: تابع جگالی نرمال استاندارد و نرمال لجستیک استاندارد

مراجع

