لم بورل کانتینلی، اهمیت و کاربردهای آن

مریم شریف دوست

عين ا. پاشا

چکیده:
در این مقاله، ابتدا لم بورل کانتینلی را مستقیم و معرفی می‌کنیم و سپس قضایای مهم و مثال‌هایی که با استفاده از این لم اثبات می‌شوند مطرح می‌کنیم.

واژه‌های کلیدی: لم بورل کانتینلی، قانون ۱–۰، بورل، همگرایی در احتمال، همگرایی تقریباً مطمئن (a.s.)

۱ مقدمه

قانون ۱–۰ کولموگروف می‌گوید که اگر متغیرهای تصادفی مستقل با سیگما جبر به صورت:

\[T = \bigcap_{n} F_n = \lim_{n \to \infty} \sigma (X_n, X_{n+1}, ...) \]

وجود داشته باشند، آن‌گاه برای هر داریم:

\[A \in T \rightarrow P(A) = 0 \]

از آن‌جایی که بیش‌ام‌های زیر همگی در ت قرار دارند، احتمال آنها صفر باشد، اما قانون ۱–۰ کولموگروف در مورد محاسبه احتمال این بیش‌ام‌ها بحث نمی‌کند.

\[A_1 = \{ \sum_{n} X_n \} \]

\[A_2 = \{ \text{وجود است} \lim_{n \to \infty} X_n \} \]

\[A_f = \left\{ \frac{\sum X_n}{n} \to 0 \right\} \]

لم بورل کانتینلی این امکان را می‌دهد که احتمال پیشامدها را به راحتی محاسبه کنیم.

۲ تاریخچه

امیل بورل در هفتم زانویه ۱۸۷۱ در اوبرون ۴ فرانسه به دنیا آمد و تحصیلات خود را در سن ۲۲ سالگی در دانشسرای عالی پاریس به پایان رساند و در همان سال به دانشگاه آزاد اسلامی واحده خمینی شهر و دانشگاه تربیت معلم تهران رفت.

Emile Borel
Aveyron

Downloaded from andisheyeemamori.irstat.ir at 15:44 +0430 on Friday August 23rd 2019
انگیزه گروه نظامی دانشگاه لیل 5 منصوب شد و در سال 1925 سالگی در همان دانشسرای استفاده گردید. در سال 1909 به عنوان مدیر نظیه‌ری انتخاب شد. در سال 1918 منتسب شد. پس از استقرار آن در سال 1941 به عنوان نظامی سیاسی و تویف عقاوید در رزم و بینشی ساخت مقامات کرد و به همین برون مذاکرات را در سال 1945 دریافت نمود.

برای کارهای علمی اولین مدل طالبی مرکز ملی تحقیقات 10 را در سال 1955 دریافت کرد. مهمترین کار برجسته در روابط، مباحث در اتاق بازماندگان، پژوهش و کاربرد آنها بود. و در سال 1944 در حالت که 25 ساله بود، کتابی تحت عنوان پارادوکس ها ی جالب منشزیر کرد و در سال 1956 در سال 85 سالگی در شهر پاریس درگذشت.

فرانچسکو باتولو کاتلی 11 در سال 1875 در پالرمو سیسیل 11 اینالیا به دنبال آمد. او در رشته ریاضی محض در پالرمو تحصیل کرد و پایان نامه ای با عنوان مکانیک آسمانی نوشت و با این کتاب تنیستین دوکلی 13 برای کاربردهای ریاضی و احتمال در عرصه صنعتی بود. کاتلی در سال 1930 تا 1958 مدیر مجله استیتو بود. اولین مقامات کاتلی در مسابقات در مورد مصاحبه‌های دسته‌بندی ومعنی و مکانیک آسمانی بود و روش‌های گروه‌رویه را برای ریاست گروه ریاضی دانشگاه لیل 5 منصوب شد و در سال 1925 سالگی، در همان دانشسرای استفاده گردید. در سال 1909 به عنوان مدیر نظیه‌ری تابعی که خودش آن را خلق کرد بود، در شهر سوئیس منصوب شد و به درجه استادی رسید. در سال 1918 به عنوان ریاست دانشگاه اکل انتخاب شد. در سال 1921 به مدت 10 سال به عنوان ریاست دانشگاه اکل انتخاب شد و در سال 1921 چهارم گردید و به خاطر فعالیت‌هایش در جنگ جهانی اول کسب کرد و در سال 1921 تا 1934 به عنوان ریاست انجمن علوم برخی گزیده شد.

اولین نظیه‌ری جالب بول، اندراوی مجموعه‌های نقطه‌ای بود. این کار به‌همراه دو ریاضیدان، ایرونسوی دیگر، رنه بایر و هنری ریک، به عنوان آگازنگدان نظیه‌ری جدید نواع یک منطوری حقیقی شناخته شد. هر چند بول، اولین کسی بود که بحث مجموعه‌های واگرا را معرفی کرد، اما اولین کسی بود که نظریه سیستماتیک سری‌های واگرا را در سال 1899 در سال 1875 سالگی توسعت داد. علاوه بر آن در سال‌های 1927-1929 مجموعه مقالاتی در مورد نظریه‌بایزیا منشزیر کرد و اولین کسی بود که با روشی استاندارد را تعریف کرد.

در طول این زمان وارد سیاست و مقالات سیاسی مهیج را به روشی تحریک کرد. او شروع به بحث در مورد اوراق، واحد کرد و تا پایان عمرش خوشبینی محکمی در این مورد داشت. بول به همین منظور به...

Lille
Croix de Guerre
Rene Baire
Henri Lebesgue
Vichy
Richerche Scientifique
Francesco Paolo Cantelli
palermo, Sicily
degli Attuari
 الخارجیات

مطالعه احتمالات معنی کردن کارهای بعیدی کانتلی در احتمالات توزیع فراوانی علم آمارگری و
کاربرد نظریه احتمال آماری بود. این در ۳۱ جولای ۱۹۲۶
در سری ۹۱ سالگی در شهر ایتالیا درگذشت.

۲.۳. لم بورل کانتلی

فرض کنید \(\{A_n\}_{n \geq 1} \) دنباله‌ای از پیشامدها باشد و
آن‌گاه: \(\sum_{n=1}^{\infty} P(A_n) < \infty \)

\(P(n \ i.o.) = P \left(\limsup_{n \to \infty} A_n \right) = 0 \)

برهان:

\(P(n \ i.o.) = P \left(\lim \bigcup_{k \geq n} A_k \right) \)

\(= P \left(\lim \bigcup_{k \geq n} A_k \right) = 0 \)

(خاصیت زیرمجموعی احتمال)

\(\leq \lim \sup_{n \to \infty} \sum_{k=n}^{\infty} P(A_k) \)

\(\sum_{k=n}^{\infty} P(A_k) < \infty \)

\(\sum_{k=n}^{\infty} P(A_k) = 0 \)

\(\sum_{k=n}^{\infty} P(A_k) = 0 \)

\(P(n \ i.o.) = 0 \)

قضیهٔ زیر با افزایش فرض استقلال شرط لازم و کافی
برای احتمال ارائه می‌دهد.

۳. لم بورل کانتلی

در این بخش، لم مشهور بورل کانتلی را معرفی می‌کنیم
و جنگ قضیه‌ی مهم‌تری که سعی در تضیع شرایط لم
داشته‌اند، به همراه اثبات ارائه می‌دهیم. این با بند
تعریف ضروری پرداخته می‌شود:

۱.۳. چند تعریف

تعریف ۱. آگر \(P \left(\lim_{n \to \infty} X_n = X \right) = 1 \)
و \(X \) دنباله‌ای مطلق به \(X \) همگراست و \(X \) تابعی
تعریف ۲. آگر \(\{A_n\}_{n \geq 1} \) دنباله‌ای از پیشامدها باشد,

\(A_n \ i.o. \) را به صورت زیر تعریف می‌کنیم:

(تعریف دوم)

\(A_n \ i.o. = \lim \sup_{n \to \infty} A_n = \bigcup_{n \geq k} A_k \)

بنیاد \(A_n \ i.o. \) پیشامد آن است که \(A_n \ i.o. \)
با به‌بینایت یک جهان \(A_n \ i.o. \) قانون دوم گزارش به صورت زیر می‌پذیرد:

\(\lim \sup_{n \to \infty} A_n = \bigcup_{n \geq k} A_k \)

(تعریف دوم)

\(\lim \sup_{n \to \infty} A_n = \bigcup_{n \geq k} A_k \)

almost surely

infinitely often
از نامساوی چیزی جف نتیجه می‌گیریم:

\[
P \left(\left| \sum_{K=1}^{n} I_{EK} - \sum_{K=1}^{n} P(E_K) \right| \geq \varepsilon \sum_{K=1}^{n} P(E_K) \right) \leq \frac{\text{Var} \left(\sum_{K=1}^{n} I_{EK} \right)}{\varepsilon^{2} \left(\sum_{j=1}^{n} P(E_{j}) \right)^{2}}
\]

از طرفی:

\[
\text{Var} \left(\sum_{K=1}^{n} I_{EK} \right) = \sum_{j=1}^{n} \sum_{K=1}^{n} P(E_{j}E_{K}) - \left(\sum_{j=1}^{n} P(E_{j}) \right)^{\dagger} \Rightarrow \lim \inf \frac{1}{n} \sum_{j=1}^{n} P(E_{j}) = 1 - x \leq e^{-x}
\]

\[
P \left(\sum_{K=1}^{n} I_{EK} - \sum_{K=1}^{n} P(E_K) \right) \geq \frac{1}{1} \sum_{K=1}^{n} P(E_K) = \infty \Rightarrow \lim \inf \frac{1}{n} \sum_{j=1}^{n} I_{EK} < \frac{1}{1} \sum_{K=1}^{n} P(E_K) = \infty
\]

پس...

\[
\sum_{j=1}^{\infty} P \left(\sum_{K=1}^{n} I_{EK} < \frac{1}{1} \sum_{K=1}^{n} P(E_K) \right) < \infty
\]

با توجه به لم بورل کانتینی خواهیم داشت:

\[
P \left(\sum_{K=1}^{n} I_{EK} < \frac{1}{1} \sum_{K=1}^{n} P(E_K) \right) \text{ i.o.} = \infty
\]

و در نتیجه پیششامد

\[
\sum_{K=1}^{n} I_{EK} \geq \frac{1}{1} \sum_{K=1}^{n} P(E_K) \text{ i.o.}
\]

برای همه حالت‌ها مگر برای تعداد مناسبی برقرار است.

از طرفی با احتمال \(
\sum_{K=1}^{K} P(E_K) = \infty
\) پس

\[
P \left(\lim \sup E_n \right) = 1
\]

نتیجه [۴] اگر دنباله \(\{E_n\}_{n \geq 1} \) مستقل باشند و علاوه بر آن

\[
\sum_{n=1}^{\infty} P(E_n) = \infty
\]

آن گاه

\[
P \left(\lim \sup E_n \right) = 1
\]

باشد، آن‌گاه

\[
P \left(\lim \sup E_n \right) = 1
\]

برهان: \(I_{E_n}(W) = \begin{cases} 1 & W \in E_n \\ 0 & W \notin E_n \end{cases} \)

\[
I_{E_n}(W) = \begin{cases} 1 & W \in E_n \\ 0 & W \notin E_n \end{cases}
\]

\[E(I_{E_n}) = P(E_n)\]
دوره‌ی مؤثر جهت ابزارهای همگرایی تقریبی مطمئن استفاده می‌شود.

قضیه: معیارهای همگرایی تقریبی مطمئن: [2] اگر دنباله‌ای از متغیرهای نسبتی فضایی باشد، آن‌گاه:

\[X_n \xrightarrow{a.s.} X \iff \forall \varepsilon > 0 \]

\[P(|X_n - X| > \varepsilon \ i.o.) = 0 \]

ثبت: برای شرط کافی کمیتی بدلایم

\[\{ |X_n - X| \geq \varepsilon \ i.o. \} \subset \{ w : \lim_n X_n(w) = X(w) \}^C \]

\[P(\lim_n X_n = X) = 1 - P(\lim_n X_n = X) = 0 \]

\[\lim \inf_n \frac{\sum_{j=1}^{n} \sum_{E_k \in \mathcal{F}} P(E_k \cap E_j)}{\sum_{E_k \in \mathcal{F}} P(E_k)} = 1 \]

و در نتیجه:

\[\lim \sup_n E_n = 1 \]

مثال نقطع عکس لیم بورل کانیکلی بدون فرض استقلال برقرار نیست. به مثال زیر نوبه‌کتی کمید:

مثال: [21] اگر \(\Omega = [0, 1] \) باشد و \(P \) یک سیگما میدان از زیبر مجموعه‌هایی باشد و \(P \) را اندیزی بگیریم و باشد، واضح باشد. البته، واضح است که \(\{ E_n \}_{n \geq 1} \) دنباله‌ای نزولی است و به یک‌گره واپس‌ماند. در نتیجه:

\[\lim \sup_n E_n = \lim E_n = \bigcap_{n=1}^{\infty} E_n = \phi \]

ولی

\[P(E_n \ i.o.) = 0 \]

4 کاربرد

در این بخش، سعی می‌کنیم قضاوت‌های مهمی را که با استفاده از این لیم‌بی، مطرح کنیم، قضیه‌ی زیر
قضیه: [5] اگر دنباله‌ای X_n نامبرهای تصادفی با تابع مشترک $F(x)$ باشد و به ازای هر x داشته باشیم $F(x) < 1$ آن گاه

$$M_n = \max \{X_1, \ldots, X_n\} \uparrow \infty \quad a.s.$$

برهان: می‌خواهیم ثابت کنیم N وجود دارد که X_N و به ازای هر w متعلق به N^c داریم:

$$P(N) = \lim_n P(N^c) = \infty$$

و به طور مداوم ثابت کنیم به ازای هر $w \in N^c$ پس اگر $n(w, j) \to \infty$ وجود دارد که به ازای هر n برگردانه مساوی (1) داریم:

$$M_n(w) \geq \varepsilon$$

و به این معنی یک مقدار ثابت می‌گوییم. خاصت کلی برقرار است.

بنابراین:

$$\sum_{j \geq n} P(M_n \leq j) = \sum_{n} P^n(j) \leq \infty$$

پس طبق چنین بیانی کنیم برقرار می‌شود.

برهان: دنباله‌ای $\{X_n\}$ در احتمال کشی است پس

$$\forall \varepsilon \exists n_0(\delta, \varepsilon) \forall r < n_0(\delta, \varepsilon) \forall \delta > n.$$

$$P[|X_r - X_s| > \delta] \leq \delta$$

حال دنباله r, به صورت زیر تعیین می‌کنیم:

$$n_1 = 1$$

$$n_j = \inf\{N \geq n_{j-1} : P[|X_r - X_s| > \delta] < 2^{-j} \forall r, s \geq N\}$$

که در تعیین دنباله r, به صورت زیر تعیین می‌کنیم:

$$P[|X_r - X_s| > \delta] < 2^{-j}$$

$$\varepsilon = \delta = 2^{-j}$$
آن گاه طبق لم بورل کانتلی، خواهیم داشت:

\[P \left(\frac{|X_n|}{n} > \varepsilon \ i.o. \right) = 0 \]

و با به عبارتی:

\[\limsup \frac{|X_n|}{n} \leq \varepsilon \quad a.s. \]

چون پیشامد دمی است، پس به طور ثابت است که توسط \(\varepsilon \) محدود و به طور ثابت است و \(\varepsilon \). \(\limsup \frac{|X_n|}{n} = 0 \) دلخواه است پس \(\varepsilon \) a.s. قضیه: [5] دنباله \(\{X_n\}_{n \geq 1} \) از متغیرهای تصادفی را در نظر گیریم که \(X_n \xrightarrow{P} X \xrightarrow{a.s.} \) شکل دارند. \(X_n \rightarrow X \) و به طور ثابت \(\varepsilon \) a.s.

\[X_n, \quad P \rightarrow X \quad \text{و خواهیم داشت:} \quad X_n, \quad a.s. \] و در نتیجه \(P \left[\frac{|X_n|}{n} > \frac{\varepsilon}{n} \right] < \frac{\varepsilon}{n} \) بزرگ برقرار است.

در قضیه ی زیر مفهوم هم‌ارزی دمی استفاده می‌شود که

اگر دنباله \(\{X_n\}_{n \geq 1} \) و \(\{X_n\}_{n \geq 1} \) هم‌ارز دمی باشن، آن گاه \(\sum_n (X_n - X_n) = \sum_n |X_n - X_n| \) به طور تقریباً مطمئن هم‌گراست.

برهان:

\[\sum_n P \left(X_n \neq X_n \right) < \infty \] \[\Rightarrow P \left(X_n \neq X_n \ i.o. \right) = 0 \] \[\Rightarrow P \left(\liminf \left(X_n = X_n \right) \right) = 1 \]

\(\limsup_{n \to \infty} \left| X_n \right| = \varepsilon \ a.s. \)

\[P \left(\frac{|X_n|}{n} > \varepsilon \right) \leq \frac{1}{2^k} \quad \forall k \geq 1 \] \[\text{و در نتیجه} \quad \sum_{k=1}^{\infty} P \left(\frac{|X_n|}{n} > \varepsilon \right) < \infty \]

\[E_k = \sum_{n=1}^{\infty} P \left(\frac{|X_n|}{n} > \varepsilon \right) \text{ به صورت} \quad \sum_{n=1}^{\infty} X_n = X_n \]

\(\sum_{n=1}^{\infty} X_n(w) = \sum_{n=1}^{\infty} X_n(w) \) با توجه به قضیه [5] اگر \(\{X_n\}_{n \geq 1} \) دنباله ای متغیرهای تصادفی باشد و به طور ثابت \(\varepsilon > 0 \) داشته باشیم:

\[\sum_{n=1}^{\infty} P \left(|X_n| > \varepsilon n \right) < \infty \]

آن گاه:

\[\lim_{n \to \infty} \frac{X_n}{n} = 0 \ a.s. \]

\[P \left(\frac{|X_n|}{n} > \frac{\varepsilon}{n} \right) < \frac{\varepsilon}{n} \]

\[\sum_n P \left(|X_n| > \varepsilon n \right) = \sum_n P \left(|X_n| > \varepsilon n \right) < \infty \]

\[\sum_n P \left(|X_n| > \varepsilon n \right) = \sum_n P \left(|X_n| > \varepsilon n \right) < \infty \]

\[\sum n P \left(|X_n| > \varepsilon n \right) = \sum n P \left(|X_n| > \varepsilon n \right) < \infty \]

\[\sum n P \left(|X_n| > \varepsilon n \right) = \sum n P \left(|X_n| > \varepsilon n \right) < \infty \]
مثال (1): \(\{ X_n \}_{n \geq 1} \) یک آماره تصادفی متناوب را باشد و
\[P(X_n = 1) = P_n = 1 - P(X_n = 0) \]
\[\lim \inf \frac{E_n}{\log n} \leq 1 + \varepsilon \] i.o.

شکل:

\[\sum P \left(\frac{E_n}{\log n} > 1 - \varepsilon \right) = \infty \]

با استفاده از لرم پول مذکور می‌توان نتیجه گرفت که:
\[P(X_n = 1 \text{ i.o.}) = 0 \]

مثال (2) (ادامه مثال (1)): \(\{ X_n \}_{n \geq 1} \) یک آماره تصادفی متناوب را باشد. برای هر یک از آماره‌ها، نتیجه‌گیری می‌شود:
\[P \left(\lim \sup _n \frac{E_n}{\log n} > 1 + \varepsilon \right) = 0 \]

و نتیجه می‌شود:
\[P \left(\lim \inf _n \frac{E_n}{\log n} \leq 1 + \varepsilon \right) = 1 \]

شکل: نشان می‌دهد
\[\limsup _n \frac{E_n(w)}{\log n} \leq 1 + \varepsilon \]

الف) برای هر یک از آماره‌ها، حالت بزگ رخ دهد.
\[\frac{E_n(w)}{\log n} > 1 - \varepsilon \]

ب) برای هر یک از آماره‌ها، حالت بزرگ رخ دهد.

به تعداد به‌نهايت n رخ دهد.

پس نتایج داشته می‌شود:
\[\limsup _n \frac{E_n}{\log n} = 1 \]
مثال (1): \(\{ \mathcal{Y}_n \} \) دنباله‌ای از متغیرهای تصادفی مستقل و هم توزیع با \(B(1, P) \) را در نظر می‌گیریم. اگر \(A \) پیش‌بینی آن باشد که در بین \(n \) و \(2n+1 \) این آزمایش، تعداد \(m \) بار متغیر رخ دهد و اگر \(\frac{1}{2} \geq P \) باشد، آن‌گاه با احتمال 1: \(A \) هیچ‌یک از متغیرهای تصادفی را رخ می‌دهد.

\[
P(\mathcal{Y}_n) \leq 1 - (1 - P^n)^{2n} > 1 - \exp\left[-\left(\frac{yP}{n}\right)^n\right]
\]

پس با استفاده از تعریف، احتمال \(A \) مستقل و

\[
P(L_n = k) = \left(\frac{1}{2}\right)^{k+1}
\]

مثال (2): \(\{ \mathcal{Y}_n \} \) دنباله‌ای از متغیرهای تصادفی مستقل با دارای تابع توزیع یک‌پارامتری id iid رخ می‌دهد. آن‌گاه

\[
P(\mathcal{Y}_n = \max \{ X_1, \ldots, X_n \}) = \frac{1}{n}
\]

از طرفی پیش‌بینی \(A \) یک رکورد باشد مستقل هستند و جنون \(\sum_{n} \mathcal{Y}_n = \infty \) طبق قانون 1-0 بورل، حکم ثابت می‌شود.

مثال (3): \(\{ \mathcal{Y}_n \} \) دنباله‌ای از متغیرهای تصادفی مستقل باشد، می‌توان نشان داد:

\[
\sum_{k=1}^{\infty} P(\mathcal{Y}_n > M) = \sum_{k=1}^{\infty} P(X_{n+k} > M) = \infty
\]

برای بعضی مقادیر مثبت، اگر \(\frac{1}{2} \geq P \) باشد، آن‌گاه با احتمال 1: \(\mathcal{Y}_n \) مستقل و پس با توجه به قانون 1-0 بورل، احتمال آن‌که مدل 1-0 و 1-0 را با توجه به رخ دهد، برای با عدد یک خواهد بود.
با توجه به استقلال A_n را تعريف كنيم. در
مستقل كنيست $A_n = \{X_n > M\}$

این صورت:

$$P \left(\sup_{n} X_n > \infty \right) = P \left[\exists M : \sup_{n} X_n < M \right]$$

$$= P \left[\bigcap_{M} X_n < M \right] = 1 - P \left[\bigcup_{M} X_n (M) \right]$$

$$= 1 - P (X_n > M \text{ i.o.})$$

مثال (9): اگر A_n پیشامدهای شرایط آمده یک سکه سالم
در پرتای 1 و 1 باشد، در این صورت:
$$P (\lim_n \sup A_n) = \sum_{n=1}^{\infty} P(A_n \text{ i.o.}) = 1$$

کافیست از احتمال خلف استفاده کنیم. بعنی:

$$\sum P(A \cap A_n) (\infty \Rightarrow \sum P(A \bigcap A_n \text{ i.o.}) = 0$$

$$\Rightarrow P (\lim_n \inf (A_n \bigcap A_n)) = 1$$

$$\Rightarrow \lim_{n \to \infty} P (\bigcap_{k=n}^{\infty} A_n) = 1$$

$$\Rightarrow P (A^c \bigcup (\bigcap_{k=n}^{\infty} A_n)) = 1$$

$$\leq P(A^c) + \lim_{n} P (\bigcap_{k \geq n} A_k^n)$$

$$\Rightarrow 1 - P(A^c) \leq \lim_{n} P \left(\bigcap_{k \geq n} A_k \right)$$

$$\Rightarrow P (A) \leq \lim_{n} \prod_{k \geq n} (1 - P(A_k^n))$$

آنگاه:
$$P (\lim_n \sup A_n) = 1$$

(الف) اگر:
$$P (\lim_n \inf A_n) = 1$$

آنلیکه:
$$P (\lim_n \sup A_n) = 1$$

(ب) برای هر A داریم:
$$P (\lim_n \sup A_n) = 1 \Leftrightarrow \sum_{n=1}^{\infty} P (A \cap A_n) = \infty$$

(الف)
حل: اگر $\mathbb{P}(\bigcup_n A_n) = \lim\limits_n \exp\left\{ -\sum_{k\geq n} \mathbb{P}(A_k) \right\}$ نباشد P داریم:

$\mathbb{P}(A_{n i.o.}) = P\left(\bigcap_{k\geq n} A_k\right) = \lim\limits_{n\to\infty} P\left(\bigcup_{k\geq n} A_k\right)$

و

$\mathbb{P}\left(\bigcap_{i\geq n} A_i\right) \geq P\left(\bigcup_{i\geq n} A_i\right) = 1.$

مثال (13): اگر $\{X_n\}_{n\geq 1}$ دنبالهای از متغیرهای تصادفی i.i.d باشد که تقریباً مطمئن ثابت نباشند، آن‌گاه $P\left(\lim_n X_n\right) = 0$.

حل: از بهره خلف استفاده می‌کنیم. پس طبق قانون $1 - \delta < \lim_{n\to\infty} \mathbb{P}(A_n) \\
\leq \lim_{n\to\infty} \sum_{k\geq n} \mathbb{P}(A_k)$

$\Rightarrow P\left(\bigcap_{i\geq n} A_i\right) = 1.$

به طور مطمئن ثابت نیستند، پس مجموعه‌ی $N = \{w: X(n)(w) \text{ ثابت}\}$ و $P(N) = 0$ وجود دارد که $P(A_n) \geq 1$.

در مجموعه‌ی N، احتمال همگرایی آنها صفر است که خلاف فرض است.

مثال (14): اگر $\{X_n\}_{n\geq 1}$ دنبالهای از متغیرهای تصادفی مستقل با تابع توزیع P_n باشد، آن‌گاه:

$P\left(\lim_n X_n = \alpha\right) = 1$

و

$\forall \varepsilon > 0 \sum_n \{1 - F_n(\varepsilon) + F_n(-\varepsilon)\} < \infty$

حل: با توجه به استقلال متغیرهای کافی‌ست ثابت کنیم:

$\sum_n \{1 - F_n(\varepsilon) + F_n(-\varepsilon)\} = \sum_n P(|X_n|)\varepsilon < \infty$

مثال (15): اگر $\{A_n\}_{n\geq 1}$ دنبالهای از بیشام‌دهای مستقل با $P(A_n) = 1$ باشد، آن‌گاه:

$P\left(\lim_n A_n\right) = 1$
مثال (15): اگر $\sum_{n=1}^{\infty} P(|X_n| > n) < \infty$ آن گاه به طور تقریباً مطمئن خواهیم داشت:

$$\lim_{n \to \infty} \sum_{n=1}^{\infty} P(|X_n| > n) < \infty$$

حل: با توجه به قضیه احتمال کل داریم:

$$\sum_{n=1}^{\infty} P(A_n) = \sum_{n=1}^{\infty} P(A_n \cap A_{n+1}) + \sum_{n=1}^{\infty} P(A_n \setminus A_{n+1})$$

و جن (عدد ثابت است):

$$\lim_{n \to \infty} \frac{P(A_n \cap A_{n+1})}{P(A_n \setminus A_{n+1})} = c$$

طبق آزمون مقایسهٔ سری‌ها و فرآیند مشابه

$$\sum_{n=1}^{\infty} P(A_n) < \infty \quad \sum_{n=1}^{\infty} P(A_n \setminus A_{n+1}) < \infty$$

نتیجه طبق لم بورل کانتیلی $P(A_n \cap A_{n+1}) = 0$ و در نتیجه طبق لم بورل کانتیلی $P(A_n) = 0$ و $n \to \infty P(A_n) \to 0$ که $\{A_n\}_{n=1}^{\infty}$

مراجع

