مقایسه برآورد نتایج چگالی طیفی در قابل یک مدل خصی تعمیم یافته و کاربردی از آن

مسعود یار محمدی

چکیده

تجزیه طیفی یک روش توسعه پایه برای تحلیل سربهای زمانی در قلمرو فرآیندهای استفاده برای کاهش سیستم‌دهی شده‌ها و متفاوتی می‌تواند این گونه از نظر داده‌های نسبت به پیش‌بینی‌هایی باشد. در این مقاله روش مقایسه برآورد نتایج چگالی طیفی برای پیش‌بینی بیش از دو سری زمانی در قابل یک مدل خصی تعمیم یافته با استفاده از روش هوشمند ارائه شده است. نمونه‌آمیزی این روش حضور خاصی در روندهای با ابزارهای آزاد برای ارزیابی زمانی است. بنابراین مسایلی که در صورت غیر از محدوده‌های نسبی با یکدیگر تبدیل به نتایج مثبت روی مسائل آزمایشگاهی را می‌تواند با ابزاری در آزمایشگاهی یک گامگیر باشد. بنابراین الگوی که در صورت داشتن مورد به طور همزمان در سری زمانی یک روش بدون تأثیر دارد.
برای برآورد تابع چگالی، از تابعی به نام دوره نگار به صورت
\[
I(\omega) = \frac{1}{N} \left(\sum_{i=1}^{N} X_i \cos(t_o) \right) + \left(\sum_{i=1}^{N} X_i \sin(t_o) \right)
\]
استفاده می‌شود.

یک نمونه از رابطه آزمون مقایسه طرفینی GLIM آماری

\[
I(\omega_k) = \frac{N}{N} \left(\sum_{i=1}^{N} X_i \cos(t_o) \right)
\]

که در برخی موارد به کار می‌رود. به استفاده از این روش می‌توان با دستیابی

طیف‌ها یکسان و سبب می‌گردد گزاره ریوی این طیف‌ها در

فرکانس‌ها مختلف، تعداد نهایی مورد مقایسه را به طور جستجوی

کاهش داده و بررسی و تحلیل نهایی سری‌هایی را تسهیل

بخشید.

برای داشتن دوم از معروف تابع چگالی طرفینی و برآورد آن،

آزمون مقایسه برآورد چگالی طرفینی را در قالب یک مدل خصی

تعیین بافت مورد بحث و بررسی قرار می‌دهد. در برخی موارد

نحوه جمع آوری نهایی نویزی و آزمون مقایسه طرفینی برای

دستور از سیگنالهای EEG را بین کرده و سپس مراحل مقایسه های

طیف‌ها را تشریح می‌کند. نتایج مربوط به کاربرد آزمون مقایسه

طبقه‌ای و بررسی اثر دارو بر نهایی نویزی در برخی چهار ارائه

می‌شوند.

2- آزمون مقایسه برآورد چگالی طرفینی و آزمون مقایسه

برآورد چگالی آن

فرض کند که \(X_j \) تابع چگالی طرفینی و برآورد آن

یک که در که \(X_j \) می‌تواند نظریه‌ای نمایش داده باشد.

Formula

\[
\gamma_j = \text{COV}(X_j, X_{j-1})
\]

و \(j = 0, \pm 1, \pm 2, \ldots \)

در این صورت، تبدیل فوریه \(\hat{\gamma} \) به صورت

\[
h(\omega) = \sum_{j=-\infty}^{\infty} \gamma_j e^{-ij\omega}
\]

را نام چگالی طرفینی فراوانی می‌نامند.

Periodogram

Spectral Density Function
در حالی که وجود تفاوت مقایسه در میان \(X_{ki} \) و در نتیجه مناسب بودن طبقه‌بندی متغیر با آنها (یعنی توان طبقه‌بندی و \(\theta_{ij} \) شامل فاصله‌بین بیانکاسان به ویژه \(\theta_k \) و \(\alpha_j \))

\[
\theta_{ij} = \theta_k + \alpha_j
\]

(7)

مطروح می‌شود. با پیوستن از [2] و با در نظر گرفتن معادله (3) برای

یک‌دانه نقش‌بندی بین فضای‌بینی‌ها و در نتیجه وجود نگاهی بین طبقه‌بندی متغیر با آنها (یعنی توان طبقه‌بندی و شامل فاصله‌بین بیانکاسان)

\[
\theta_{ik} = \theta_k + (\alpha_i + \beta_j \omega_k + \gamma_j \omega_k)
\]

(8)

لذا با در نظر گرفتن معادلات (7) و (8) و هر رتبه‌بندی سه آزمون فرضی

\(H_0 : \alpha_j = \alpha, \beta_j = \beta, \gamma_j = \gamma \)

\(H_1 : \beta_j = \beta, \gamma_j = \gamma \)

\(H_1 : \alpha_j \neq \alpha, \beta_j \neq \beta, \gamma_j \neq \gamma \)

پیشنهاد طبقه‌بندی:

\(\theta_{ij} = \theta_k \) احتمال بالا باشد.

با توجه به معادله (7) در نتیجه

\[
\text{Deviance(مدل)} = 2 \left[L(x) - \text{مدل کاهش بایه} \right]
\]

\[
\text{Deviance} = \frac{1}{n} \sum_{i=1}^{n} \left[\log h_i(\omega_k) - \log h_i(\omega_k) \right] + \sum_{i=1}^{n} \left[\omega_k \log \left(\frac{h_i(\omega_k)}{h_i(\omega_k)} \right) \right]
\]

\[
\text{Deviance} = \log h_i(\omega_k) - \log h_i(\omega_k) + \omega_k \log \left(\frac{h_i(\omega_k)}{h_i(\omega_k)} \right)
\]

(9)
یک منبع مایل به پیامدهای طبیعی در گروه‌های کنترل و کنترل می‌باشد. در نتیجه سه آزمون بالا به ترتیب زیر بررسی می‌شود:

1. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

2. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

3. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

این آزمون‌ها نسبت به شناسایی تغییرات جزئی طبقه‌بندی نظر
تراکم طیف در فرآیندهای آریا و یا بالا و یا به عنوان قله‌ای و یا به عنوان قله‌های پیشین، در مقیاس‌های بالا یا پایین در لایه‌های مختلف یک تئوری را
β β یک تئوری کمی را (برای آزمون 1) می‌پذیرد. در حالی که بیش از یک تئوری را (برای آزمون 3) نشان‌گذارین کننده بوده.
طیف‌های مورد بررسی است. بر اساس رده‌بندی آزمون‌ها، به ترتیب
شناخته‌شده‌اند و با اختلاف طبقه‌بندی خواهد بود. برای تسریع و
همگان محاسبات لگاریتم‌های درستی‌کننده و آزمون‌های ذکر شده، از
نرم‌افزار GLIM استفاده می‌شود. قابل ذکر است که در مدل‌های
خطر نمودن یافته با رابطه بین یک و پذیرنده ″لگاریتمی و خطاهای گاما″ به
کار رفته است. (28)

2. نحوه جمع آوری داده‌ها

یک منبع مایل به پیامدهای طبیعی در گروه‌های کنترل و کنترل می‌باشد. در نتیجه سه آزمون بالا به ترتیب زیر بررسی می‌شود:

1. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

2. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

3. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

این آزمون‌ها نسبت به شناسایی تغییرات جزئی طبقه‌بندی نظر
تراکم طیف در فرآیندهای آریا و یا بالا و یا به عنوان قله‌ای و یا به عنوان قله‌های پیشین، در مقیاس‌های بالا یا پایین در لایه‌های مختلف یک تئوری را
β β یک تئوری کمی را (برای آزمون 1) می‌پذیرد. در حالی که بیش از یک تئوری را (برای آزمون 3) نشان‌گذارین کننده بوده.
طیف‌های مورد بررسی است. بر اساس رده‌بندی آزمون‌ها، به ترتیب
شناخته‌شده‌اند و با اختلاف طبقه‌بندی خواهد بود. برای تسریع و
همگان محاسبات لگاریتم‌های درستی‌کننده و آزمون‌های ذکر شده، از
نرم‌افزار GLIM استفاده می‌شود. قابل ذکر است که در مدل‌های
خطر نمودن یافته با رابطه بین یک و پذیرنده ″لگاریتمی و خطاهای گاما″ به
کار رفته است. (28)

2. نحوه جمع آوری داده‌ها

یک منبع مایل به پیامدهای طبیعی در گروه‌های کنترل و کنترل می‌باشد. در نتیجه سه آزمون بالا به ترتیب زیر بررسی می‌شود:

1. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

2. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

3. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

این آزمون‌ها نسبت به شناسایی تغییرات جزئی طبقه‌بندی نظر
تراکم طیف در فرآیندهای آریا و یا بالا و یا به عنوان قله‌ای و یا به عنوان قله‌های پیشین، در مقیاس‌های بالا یا پایین در لایه‌های مختلف یک تئوری را
β β یک تئوری کمی را (برای آزمون 1) می‌پذیرد. در حالی که بیش از یک تئوری را (برای آزمون 3) نشان‌گذارین کننده بوده.
طیف‌های مورد بررسی است. بر اساس رده‌بندی آزمون‌ها، به ترتیب
شناخته‌شده‌اند و با اختلاف طبقه‌بندی خواهد بود. برای تسریع و
همگان محاسبات لگاریتم‌های درستی‌کننده و آزمون‌های ذکر شده، از
نرم‌افزار GLIM استفاده می‌شود. قابل ذکر است که در مدل‌های
خطر نمودن یافته با رابطه بین یک و پذیرنده ″لگاریتمی و خطاهای گاما″ به
کار رفته است. (28)

2. نحوه جمع آوری داده‌ها

یک منبع مایل به پیامدهای طبیعی در گروه‌های کنترل و کنترل می‌باشد. در نتیجه سه آزمون بالا به ترتیب زیر بررسی می‌شود:

1. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

2. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

3. آزمون H0 در مقابل H1
 df = (n - 1)
 نیروی بحرانی χ²α/2

این آزمون‌ها نسبت به شناسایی تغییرات جزئی طبقه‌بندی نظر
تراکم طیف در فرآیندهای آریا و یا بالا و یا به عنوان قله‌ای و یا به عنوان قله‌های پیشین، در مقیاس‌های بالا یا پایین در لایه‌های مختلف یک تئوری را
β β یک تئوری کمی را (برای آزمون 1) می‌پذیرد. در حالی که بیش از یک تئوری را (برای آزمون 3) نشان‌گذارین کننده بوده.
طیف‌های مورد بررسی است. بر اساس رده‌بندی آزمون‌ها، به ترتیب
شناخته‌شده‌اند و با اختلاف طبقه‌بندی خواهد بود. برای تسریع و
همگان محاسبات لگاریتم‌های درستی‌کننده و آزمون‌های ذکر شده، از
نرم‌افزار GLIM استفاده می‌شود. قابل ذکر است که در مدل‌های
خطر نمودن یافته با رابطه بین یک و پذیرنده ″لگاریتمی و خطاهای گاما″ به
کار رفته است. (28)
نتایج می‌توان نتیجه‌گیری کرد که فکرک‌ها ممکن است با ترکیب ماده‌های افکاری گروهی که در این مطالعه مورد بررسی قرار گرفته‌اند، همگرایی یافته باشند.

3.2 محیط انجمیدگی‌های طبیعی

1. سیگناال‌های EEG به‌دست آمده از این دسته مطالعات در مراحل گرفتگی و ترکیب قلبی که در فکرک‌های مختلف یافت می‌شود.

2. طبیعت مربوط به یک هر عدد در برنامه جشن‌های زنده و تعداد دووری به یک H

3.2 آزمون مقایسه طبیعی برای 6 دوره از نیست

داده‌های EEG در حال چنین به نمایش در محدوده شامل 6 بهره و 4 تا 17 دوره شا
نتایج مربوط به کاربرد آزمون مقایسه طرفی و برای اثر دور و ثبت داده های EEG در باورسی اثرهای 4 تیمار مورد بحث، داده های جمع آوری شده EEG در زمانهای 11-11 را در نظر گرفته و آزمون مقایسه طرفی را برای آزمون اطلاعاتی به دست آمده در دوره های مختلف انجام دهید و دوره های همگون را در فاصلهای 1/4 هرتیز لینیک گیری می کنید. سپس برای هر مجموعه از طرفیه میانگین گیری هر میزان طوان در محدوده فاصله های خاص در داده های EEG:

- گام از 4/3 هرتیز (حدوده فرکانس Δ)
- از 4/3 تا 8 هرتیز (حدوده فرکانس Θ)
- از 8 تا 13/6 هرتیز (حدوده فرکانس α)
- بیشتر از 13/6 تا 15/6 هرتیز (حدوده فرکانس β)

را محاسبه و نسبت به زمانهای جمع آوری مشاهدات رسم می کنید. از بررسی نمودارهای مربوط به طوان در طیف، در محدوده ها فرکانس Δ و Θ، موج دیگر جسمگری نشده و لذا تحلیل سومینی به دست نمی آید. ولی رفتار مربوط به اموج α و β بسیار نزدیک به نتایج به دست آمده از تحقیقات گذشته است، بدن صورت که در بیشتر تحقیقات انجام شده ثابت آمیخته (1992) نشان داده شده است که طور کلی اثرهای آرام بخش حاصل به از مصرف مشابه نزدیکی این ابزار به کاهش اموج α و افزایش اموج β می شود.

نتیجه گیری نهایی

در میان روشهای تحلیل و خلاصه کردن اطلاعات به دست آمده از سه بهای زمانی در قلمرو فرکانس، روش تحلیل طیفی از جایگاه ویژه ای برخوردار است. در این مقاله مقایسه برآورد ویژگی EEG طیفی برای بخش از مجموعه با استفاده از تعمیم یک گام آزمون مناسب به [2] در قالب یک مدل خطی تعمیم یافته بررسی شده، سپس کاربرد آن در بررسی اثرهای مشابه در زمانهای مختلف برای آزمون اطلاعاتی به دست آمده در دوره های مختلف (جستجو با و بسته انجام و دوره های همگون در فاصلهای 1/4 تریمی گیری که برای بررسی نمودارهای مربوط به طوان طیفی میانگین گیری شده در محدوده های فرکانس Δ و Θ می جای جستجوی جرمگری نشده، ولی رفتار مربوط به اموج α و β
سیرا زندگی به نتایج به دست آمده از تحقیقات گذشته است، به‌علاوه افزایش امواج β می‌شود.

جدول 1: انحرافات و درجات آزادی مناظر برای پرازش مدل‌های ۶ مربوط به دوره نگارها در حال حاضر بسته

<table>
<thead>
<tr>
<th>مدل</th>
<th>انحراف</th>
<th>درجه آزادی</th>
<th>آزمون</th>
<th>انحرافات</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₀ : θ_k</td>
<td>44/904</td>
<td>320</td>
<td>X²(0,df)</td>
<td>11/070</td>
</tr>
<tr>
<td>H₁ : θ_k + α_j</td>
<td>34/591</td>
<td>315</td>
<td>H₀ v H₁</td>
<td>0/035</td>
</tr>
<tr>
<td>H₂ : θ_k + α_j + β_jω_k + γ_jω_k</td>
<td>38/441</td>
<td>305</td>
<td>H₀ v H₂</td>
<td>18/307</td>
</tr>
<tr>
<td>H₀ v H₂</td>
<td>76/133</td>
<td>15</td>
<td>24/996</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2: آزمون مقایسه طیف‌ها برای ۶ دوره در رابطه با کلونزاپام ۵، زمان ۷ و کانال ۱ در حال حاضر بسته

<table>
<thead>
<tr>
<th>مدل</th>
<th>انحراف</th>
<th>درجه آزادی</th>
<th>آزمون</th>
<th>انحرافات</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₀ : θ_k</td>
<td>58/610</td>
<td>320</td>
<td>X²(0,df)</td>
<td>11/070</td>
</tr>
<tr>
<td>H₁ : θ_k + α_j</td>
<td>58/473</td>
<td>315</td>
<td>H₀ v H₁</td>
<td>0/035</td>
</tr>
<tr>
<td>H₂ : θ_k + α_j + β_jω_k + γ_jω_k</td>
<td>39/373</td>
<td>305</td>
<td>H₀ v H₂</td>
<td>18/307</td>
</tr>
<tr>
<td>H₀ v H₂</td>
<td>74/884</td>
<td>15</td>
<td>24/996</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3: مقدار میانگین فرکانسی در رابطه با کلونزاپام ۵، زمان ۷ و کانال ۱ در حال حاضر بسته

<table>
<thead>
<tr>
<th>دوره</th>
<th>۱</th>
<th>۳</th>
<th>۵</th>
<th>۷</th>
<th>۹</th>
<th>۱۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/177</td>
<td>18/973</td>
<td>17/860</td>
<td>15/746</td>
<td>17/054</td>
<td>19/476</td>
<td></td>
</tr>
</tbody>
</table>

جدول 4: آزمون مقایسه طیف‌ها برای دوره های ۷، ۹ و ۱۱ در رابطه با کلونزاپام ۵، زمان ۷ و کانال ۱

<table>
<thead>
<tr>
<th>مدل</th>
<th>انحراف</th>
<th>درجه آزادی</th>
<th>آزمون</th>
<th>انحرافات</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₀ : θ_k</td>
<td>27/288</td>
<td>192</td>
<td>X²(0,df)</td>
<td>7/810</td>
</tr>
<tr>
<td>H₁ : θ_k + α_j</td>
<td>22/424</td>
<td>189</td>
<td>H₀ v H₁</td>
<td>17/380</td>
</tr>
<tr>
<td>H₂ : θ_k + α_j + β_jω_k + γ_jω_k</td>
<td>21/452</td>
<td>183</td>
<td>H₀ v H₂</td>
<td>17/811</td>
</tr>
<tr>
<td>H₀ v H₂</td>
<td>5/822</td>
<td>9</td>
<td>17/811</td>
<td></td>
</tr>
</tbody>
</table>
شکل 1. نمودار داده‌های ثبت شده EEG برای تیمار 1، زمان 7، کانال 1، چشم‌پاش

شکل 2. نمودار برآورد طیف‌های داده‌های ثبت شده EEG برای شکل 1
شکل ۳: نمودار مقدار اندازه‌گیری امواج α برای ۴ تیمار در زمان‌های مختلف برای فرد اول، در حالت جشن‌بانی بسته

شکل ۴: نمودار برآورد طیف میانگین گغیر شده برای ۱۱ زمان و برای تیمار ۱ و کانال ۳، در حالت جشن‌بانی بسته
مقایسه برآورده‌ی نوع‌های چگالی طیف در قالب یک مدل خطی نمایش یافته و کاربرد آن

شكل ۵: نمودار مقدار اندازه‌گیری انواج برای ۴ تیمار در ۱۱ زمان مختلف، برای چشمان باز

شکل ۶: نمودار برآورده‌ی طیف میانگین گیری شده در ۱۱ زمان برای تیمار ۱ و کنال ۲ در حالت چشمان باز

[1] آمار زیان مشترکی است که ارتباط را ممکن می‌سازد.