معرفي الگوهای دوختی در سریهای زمینی: تشخیص و برآورد

سید مهدی امیر جهانشاهی ۱ حسینعلی نیرومند ۲

چکیده
در این مقاله ابتدا الگوهای دوختی و پسی الگوهای دوختی با طریقی قطری و طریقی قطری، و زیر قطری را معرفی می‌کنیم. همچنین با الگوهای دوختی پردازش مولکولی و شرایط مالی آنها اشکال ششی و روش‌های تشخیص مربی الگوهای دوختی را معرفی و کردیم. و نیز الگوهای برآورد پارامترهای الگوهای دوختی آنها را نشان دادیم. و در انتهای پردازه های مورد نیاز برای شیب سازی و برآورد پارامترهای الگوهای دوختی قطری و مارکوفی علی‌های می‌کنیم.

۱. مقدمه

۱.۱ آشنایی با الگوهای دوختی

الگوهای دوختی کاربردهای فراوانی در علوم زیستی، اقتصاد، مهندسی، جغرافیا و بیوتکنیک و ... داردند. خصوصیت مورد توجه فرآیند دوختی این است که بین فاصله‌ها و قدرت‌ها، ساختار دارند. نظریه آن شیب یک فرآیند خطی است. این الگوها ولی بار توسط مولکول در سال ۱۹۷۳ ارائه شدند. کاربردهای آنها برای مدل کردن سریهای زمینی توسعه گرفته و اندرسون [۱] در سال ۱۹۷۶ شده است و بعد از آن توسعه پرستی [۱] و به‌طور کلی برای وزن و [۲] مورد بحث قرار گرفته اند.

۱.۲ الگوهای سری زمینی دوختی کلی

شکل کلی الگوهای سری زمینی دوختی، نیلیه ای از منجره‌های صادقی [۲۱]، [۲۲] یعنی این الگوهای دوختی در معادله (۱.۲) باشد، مطالعه که با می‌تواند میرسد. و به صورت زیر نماشی می‌دهم:

\[X_i = \sum_{j=1}^{n} a_j X_{i-j} + \sum_{j=1}^{n} c_j v_{i-j} + \sum_{j=1}^{p} b_j v_{i-j} X_{i-j} \]

۱.۳ الگوهای دوختی کاربردهای فراوانی در علوم زیستی

کاربردهای ارده، دانشگاه، دانشگاه فارسی، دانشگاه فارسی شهید.

گروه آمار دانشکده علوم ریاضی، دانشگاه فارسی مشهد.

Mohler [۷]

Granger & Anderson [۱]
Priestley [۵]
Rao [۳]
\[X_t = \sum_{j=1}^{p} a_j X_{t-j} + \sum_{j=1}^{m} b_j X_{t-j} \varepsilon_t + \varepsilon_t \]

\[X_t = \sum_{j=1}^{p} a_j X_{t-j} + \sum_{j=1}^{m} b_j X_{t-j} \varepsilon_t + \varepsilon_t \]
روش‌های تشخیص انواع آگاهی در سری‌های زمانی: تحقیق و برآورد

شکل ۲-۴ شرایط مانی‌پا
با فرض $\mu_i = E(X_i)$ و در هم‌خوانی (۱.۳-۱) (۱.۳-۱) و (۱.۳-۲) بایستی داشته باشد:

$$\bar{\mu}_i = A\mu$$

بنابراین (۱.۳-۲) شرط کافی برای مانی‌پا حالت مانی‌پا اول $\{X_i\}$ از 1, و در واقع $\xrightarrow{\Delta} 1$ به صورت $E(X_i)\rightarrow 1$ و این به صورت برای مانی‌پا زیر است:

$$\rho(A) = \max_{1 \leq p \leq \infty} \left\{ \lambda_p(A) \right\} < 1$$

که در آن $\rho(A)$ ویژه مقدارهای ماتریس A هستند و $\lambda_p(A)$ ریشه‌های طیفی ماتریس A نامیده می‌شود. سپس رخ (۱.۳-۱) و نتیجه دارد که شرط کافی برای مانی‌پا حالت مانی‌پا دوم مدل (۱.۳-۱) به صورت زیر است:

$$\rho(A \otimes A + B \otimes B) < 1$$

که در آن $A \otimes A$ حاصلضرب کرونکر از ماتریس A است.

روش‌های تشخیص انواع آگاهی دوختی

در سری زمانی کلاسیک، توابع خود همستگی نمونه‌ای هستند و خود همستگی جزئی نمونه‌ای، خود همستگی وارون نمونه‌ای و خود همستگی وارون جزئی نمونه‌ای برای تشخیص مانی‌پا از گروه‌های خشک، موارد استفاده گسترده‌ای داردند، ولی در تشخیص سری‌های زمانی غیرخطی از آنها استفاده گسترده نمی‌شود. زیرا آنها فقط نتایج توصیف تغییرات در گروه‌های خطی را دارند و بر این اساس در تشخیص سری‌های زمانی غیرخطی کارآمد نیستند. در زیر جند روش تشخیص مانی‌پا گروه‌های دوختی را معرفی می‌کنیم.

Neudecker

Sample Autocorrelation Function (SACF)

Sample Partial Autocorrelation Function (SPACF)

Sample Inverse Autocorrelation Function (SIACF)

Sample Inverse Partial Autocorrelation Function (SIPACF)
فرآیند دارای ساختار خود همبستگی (1,1)

\[X_t = b_{1t} X_{t-1} + \varepsilon_t \]

تحت کوواریانس، به صورت یک فرآیند تصادفی محسوس ظاهر

\[\text{ARMA}(k,1) \]

می شود، و لینه

\[X_t \]

شانخته می شود. \(^{(1)}\)

همان‌طور که در نمودارهای شکل 1 ملاحظه می شود، هنگامی ضریب معنی داری وجود ندارد، بنا براین الگوی دوختی با الگوی

مذکور، از فرآیند تصادفی محسوس پیوسته می‌کند.

در نمودارهای شکل 2 از MR به بعد فلک به بعد و AC

نمودارهایی از MR به بعد فلک به بعد فلک شده است

و IACF و PACF از MR به بعد فلک به بعد فلک شده است

بنا براین می‌توان نتیجه گرفت که نتوان مدلیند است لذبد شده از الگوی قبلی با الگوی مذکور، از فرآیند \(\text{ARMA}(2,1)\) کننده

\[b_{1t} \]

\[0.11 \]

\[105 \]

ویژه است که می‌توانیم مربوطات و رابطه آکاتیک

الگوی دوختی بسیار کمیک از مقدار ماتر دارن است

\[\varepsilon_t \]

\[(BL) \]

\[11 \]

\[74 \]

\[52 \]

\[11 \]

\[0.1 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]

\[2 \]}
روش‌های پرآورد پارامترهای الگوهای
دو خطی

مطالعه پرآورد پارامترهای مدل دو خطی، در اصل با پرآورد کردن پارامترهای یکسک مدل خطی نشاسته ندارد. مدل دو خطی زیر را در نظر بگیرید:

\[X_i + \sum_{i=1}^{p} a_i X_{i-i} = \alpha + \sum_{j=1}^{m} b_j X_{i-j} + \epsilon_i \]

(۳.۳)

فرزند کننده جمله‌ای \(\{X_i\} \) مشاهدات سری مانی \(X_1, X_2, ..., X_N \) که در زیر برای کننده بیشتر به نشان می‌دهند.

\(\theta^{(i+1)} = \theta^{(i)} - H^{-1}(\theta^{(i)}) Q(\theta^{(i)}) \)

(۳.۴)

که در آن \(\theta^{(0)} \) مجموعه پرآورد می‌باشد. پارامترهای مدل دو خطی در مرحله ۱-ام نکارا است و

\[Q'(\theta) = \begin{bmatrix} \frac{\partial Q(\theta)}{\partial \theta_i} & \frac{\partial Q(\theta)}{\partial \theta_j} \\ \vdots & \ddots & \vdots \\ \frac{\partial Q(\theta)}{\partial \theta_n} & \frac{\partial Q(\theta)}{\partial \theta_1} & \frac{\partial Q(\theta)}{\partial \theta_n} \end{bmatrix} \]

(۳.۵)

مشتقات جزئی \(Q'(\theta) \) با نوشت \(\theta_0 \) به عوض عبور ضرایب

\[\frac{\partial Q(\theta)}{\partial \theta_i} = \sum_{j=1}^{n} e_j \frac{\partial \epsilon_i}{\partial \theta_j}, \quad i, j = 1, 2, ..., p \]

(۳.۶)

\[\frac{\partial^2 Q(\theta)}{\partial \theta_i \partial \theta_j} = \sum_{j=1}^{n} e_j \frac{\partial \epsilon_i}{\partial \theta_j} + \sum_{j=1}^{n} e_j \frac{\partial^2 \epsilon_i}{\partial \theta_i \partial \theta_j}

i, j = 1, 2, ..., n \]

Newton-Raphson

Nielsen & Madsen

Lag Dependence Function

Partial Lag Dependence Function

Nonlinear Lag Dependence Function
\[
\psi(\theta, \theta_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} b_j X_{i-j} \frac{\partial^2 \varepsilon_i}{\partial \theta_i \partial \theta_j}.
\]

حال با یا به مشتقات جزئی مولفه اول و دوم و استفاده از معادلات بایگانی (6.3) و (6.2) و نیز استفاده از بردار \[G\] و ماتریس \[H\] (معروف به Hessian) که در (6.3) تعريف شده و رابطه تکراری (6.2) مجموعه هایی از مقادیر \(a_i\) و \(b_j\) که به \(\alpha\) و \(\gamma\) می‌شود (معمولاً اگر با مقادیر اولیه خوبی، تکرار را شروع کنیم \(\alpha\) و \(\gamma\) مانده‌ها به وسیله رابطه زیر برآورد می‌شوند:

\[
\frac{\partial^2 \varepsilon_i}{\partial \theta_i \partial \theta_j} \approx \sum_{i=1}^{n} \sum_{j=1}^{m} b_j X_{i-j} \frac{\partial^2 \varepsilon_i}{\partial \theta_i \partial \theta_j}.
\]

که در آن،

\[
\phi(a_i) = X_{i-i}, \quad i = 1, 2, ..., p
\]

\[
\frac{\partial^2 \varepsilon_i}{\partial b_j} + \phi(b_j) = -X_{i-i} \varepsilon_{i-j}, \quad i = 1, 2, ..., m, \quad j = 1, 2, ..., k
\]

که در آن:

\[
\phi(\alpha) = -1
\]

همچنین فرض می‌کنیم:

\[
\varepsilon_i = \frac{\partial \varepsilon_i}{\partial \theta_i} = 0, \quad i = 1, 2, ..., n
\]

بنابراین مشتقات جزئی مولفه دوم در معادلات بایگانی زیر صدق می‌کند:

\[
\frac{\partial^2 \varepsilon_i}{\partial a_i \partial a_i} = 0, \quad \frac{\partial^2 \varepsilon_i}{\partial a_i \partial \alpha} = 0, \quad i, i' = 1, ..., p
\]

\[
\frac{\partial^2 \varepsilon_i}{\partial a_i \partial b_{i'}} = -X_{i-i} \frac{\partial \varepsilon_{i-i}}{\partial a_i}
\]

\[
\frac{\partial^2 \varepsilon_i}{\partial b_{i'} \partial b_{i'j}} = \psi(a_i, b_{i'}) = -X_{i-i} \frac{\partial \varepsilon_{i-i}}{\partial b_{i'}} - X_{i-i} \frac{\partial \varepsilon_{i-i}}{\partial b_{j'}}
\]

\[
\frac{\partial^2 \varepsilon_i}{\partial b_{i'} \partial \alpha} = -X_{i-i} \frac{\partial \varepsilon_{i-i}}{\partial \alpha}, \quad \frac{\partial^2 \varepsilon_i}{\partial \alpha} = 0
\]

\[
\frac{\partial^2 \varepsilon_i}{\partial \alpha} = 0
\]

که در آن:

Marquardt \(^{14}\)
run;
proc nlin method=marquardt data=new;
 parms a=1 to .8 by .1;
 model x=a*x1*zlag2(resid);
 resid=x-model.x;
run;
proc model data=new;
 endo x;
 parms a;
 x=a*x1*zlag2(-resid.x);
 fit x start=(a .1 to .8 by .1) / siml;
run;

برنامه مورد نیاز برای شبیه‌سازی و برآورد پارامترهای الگوی مارکوفی

\[X_t = \frac{1}{3} X_{t-1} + \frac{1}{4} X_{t-2} + \varepsilon_t \]

*Simulation: \(X(t) = 0.3X(t-1) + 0.4X(t-1) + \varepsilon(t) \);

option ps=400;
data bilin;
array xx{501} x1-x501;
xx{1}=0;
array ee{501} e1-e501;
ee{1}=0;
do t=2 to 501;
 ee{t}=normal(856509);
 xx{t}=0.3*xx{t-1}+0.4*xx{t-1}+ee{t}+
 ee{t};
end;
output;
run;
data markov;
set bilin;
file d:\mahdi\data.txt';
put x2-x501;
run;
data new;
infile d:\mahdi\data.txt';
input x @a@;
t+1;
x2=x2**2;
x1=lag1(x);
run;
proc gplot;
plot (x x2)*t/frame vref=0;
symbol i=join;
run;
proc arima;

*Estimation algorithms;
proc nlin method=newton data=new;
 parms a=1 to .8 by .1;
 model x=a*x1*zlag2(resid);
 resid=x-model.x;
run;
proc arima;

شکل 1

نمودار های IACF و PACF، ACF

$X_t = b \varepsilon_{t-1} + X_{t-1} + \varepsilon_t$
نمودار های IACF و PACF, ACF

$X_t = bX_{t-1} + \varepsilon_t$

مراجع