توزیع پارتو یکنواخت و توزیع پارتو یکنواخت نمایشگاه و کاربردهای آنها در داده‌های دارآمد

آبتیا عبداللهی ناپاییه، آبتیا عبداللهی ناپاییه

تاریخ دریافت: 1397/1/25
تاریخ پذیرش: 1397/8/24

چکیده:
در این مقاله، یک توزیع جدید معرفی می‌گردد که تعمیمی از یک توزیع شناخته شده است. این توزیع انعطاف‌پذیر بوده و در مدل‌سازی داده‌های دارآمد کاربرد دارد. در اینجا برخی از ویژگی‌های ریاضی و توزیع‌ی این انگیزه‌گری ارائه می‌شود و سپس برای نشان دادن انعطاف‌پذیری توزیع جدید، کاربردهایی از این توزیع در داده‌های واقعی ارائه شود. نتایج برآzerbaiز داده‌های نیز مناسب بودن این انگیزه‌گری را برای مجموعه‌داده‌های واقعی در نظر گرفته شده تأیید می‌کند.

واژه‌های کلیدی: توزیع پارتو، توزیع پارتو یکنواخت نمایشگاه و کاربردهای آنها در داده‌های دارآمد

1 مقدمه
با توجه به این که آمار یکی از مهم‌ترین علوم کاربردی است که با سایر رشته‌های علمی از جمله اقتصاد مرتبط است، این روند سال‌های اخیر، علاقه‌ریزی برای تحقیق‌های در زمینه مدل‌های پارامتری توزیع درآمد به‌وجود آمده است. مدل‌های احتمالی مربوط به توزیع درآمد، برای ارزیابی استاتدارد سطح پارامتری فلوکس اجتماعی و با محدوده‌های مختلف یک گروه از دانشجویان و دانشجویان دانشگاه تهران به‌صورت تحلیلی به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع نوار درآمد در دانشجویان و دانشجویان دانشگاه تهران به‌منظور بررسی توزیع تشابه نشانده توزیع N
را به‌طور متقابل مختلف پارامترها نشان می‌دهد که به‌صورت
یک‌جاگر یک‌جاگر است و در نقطه یک‌جاگر می‌شود.
اگر تابع توزیع تجمیع توزیع (U-PD) به‌صورت رابطه (1) پاشید، در این صورت تابع چگالی احتمال این توزیع به‌صورت
زیر است:

\[g(x) = \frac{b}{b - a} \theta \frac{m^\theta}{[x(x + 1)]^{\theta + 1}}, \quad m \left(\frac{a}{b} \right)^{\frac{\theta}{\theta + 1}} < x < \infty \quad (2) \]

تابع پایه و تابع نرخ خطر (نرخ خطر می‌بارد در یک پایه‌بازه زمانی مشخص) این توزیع نیز به‌ترتیب به‌صورت زیر هستند:

\[S(x) = \frac{b(m)^\theta}{b - a}, \quad \frac{b(m)^\theta}{b - a} \frac{b(m)^\theta}{b - a} < x < \infty \]

\[h(x) = \frac{b(m)^\theta}{b - a} \frac{b(m)^\theta}{b - a} \frac{b(m)^\theta}{b - a} \frac{b(m)^\theta}{b - a} < x < \infty \]

\[G(X) = 1 - \frac{b(a)}{b - a}, \quad m \left(\frac{a}{b} \right)^{\frac{\theta}{\theta + 1}} < x < \infty \quad (1) \]

که که پارامتر مقياس و \(\theta \) پارامتر شکل است. شکل ۱ نمودار تابع توزیع تجمیع این توزیع

![شکل ۱: تابع توزیع تجمیع پارتو یک‌جاگر با پارامترها مختلف](image1)

![شکل ۲: تابع چگالی احتمال توزیع (U-PD) با پارامترها مختلف](image2)
تابع نرخ خطر این توزیع نیز به صورت زیر است:
\[h(x) = \frac{[b(m)^\theta_m]}{b-a} \left[1 - \frac{b(m)^\theta_m}{b-a} \right] \]

\[\frac{1}{1 - \frac{b(m)^\theta_m}{b-a}} \]

در شکل‌های زیر نمودار تابع چگالی احتمال و تابع نرخ خطر توزیع جدید به صورت یکپاره رسم شده است. همانطور که مشخص است تابع نرخ خطر این توزیع بر حسب مقادیر پارامترها به صورت وانی شکل و وانی شکل وارون است.

شکل ۲ نمودار تابع چگالی احتمال این توزیع را نشان می‌دهد، که تابع چگالی احتمال این توزیع به صورت یکپاره گرفته و در افزایش افزایش افتاده است. حال فرض کنید X دارای تابع توزیع تجمعی به صورت رابطه (1) باشد، در این صورت تابع توزیع وانی شده آن به صورت زیر است:
\[G(x) = \left[1 - \left(\frac{b(m)^\theta_m}{b-a} \right)^\gamma \right] \]
\[m \left(\frac{b-a}{b} \right)^{-\gamma} < x < \infty \]

تابع چگالی احتمال این توزیع با مشتق‌گیری از رابطه بالا به صورت زیر به دست می‌آید:
\[g(x) = \left[\frac{b(m)^\theta_m}{b-a} \right] \left[1 - \left(\frac{b(m)^\theta_m}{b-a} \right)^\gamma \right]^{-1} \]
\[m \left(\frac{b-a}{b} \right)^{-\gamma} < x < \infty \]

شکل ۱ نمودار تابع چگالی احتمال توزیع EU-PD (ب) تابع چگالی احتمال توزیع EU-PD (ب) بازای مقادیر مختلف پارامترها.

(۱) تابع چگالی احتمال توزیع (EU-PD) (ب) بازای مقادیر (ب) تابع چگالی احتمال توزیع EU-PD) (ب) بازای مقادیر مختلف پارامترها متفاوت است.

(۲) تابع نرخ خطر توزیع (EU-PD) (ب) بازای مقادیر مختلف پارامترها.

(۳) تابع نرخ خطر توزیع (EU-PD) (ب) بازای مقادیر مختلف پارامترها.
گشتاورها مورد نیاز این است، برایدش می‌شود اگر
\[g(X) = \left[\frac{b \theta \gamma}{b - a} \right] \left[1 - \frac{b(m \beta)(\gamma)}{b - a} \right]^{\gamma - 1}. \]
در این صورت بست چنین به صورت
\[g(X) = \left[\frac{b \theta \gamma}{b - a} \right] \sum_{j=0}^{\infty} \left(\frac{-(\gamma - 1)}{j} \right) \left(\frac{b(m \beta)}{b - a} \right)^{j} \]
\[G(X) = \sum_{j=0}^{\infty} \left(\frac{-(\gamma - 1)}{j} \right) \left(\frac{b(m \beta)}{b - a} \right)^{j}. \]

و به‌طور مشابه بست تابع توزیع آن نیز به صورت زیر است:
\[G(X) = \left[1 - \frac{b(m \beta)}{b - a} \right]^\gamma. \]

در این صورت گشتاور مربوط به توزیع (EU-PD) به‌صورت زیر محاسبه می‌شود:
\[E[X^r] = \int_{-\theta}^{\theta} x^r \frac{b \theta \gamma}{b - a} \frac{m \beta}{b - a} \left(\frac{b(m \beta)}{b - a} \right)^{x - 1} dx = \int_{-\theta}^{\theta} x^r \frac{b \theta \gamma}{b - a} \frac{m \beta}{b - a} \left(\frac{b(m \beta)}{b - a} \right)^{x - 1} dx \]
\[= \frac{m(b - a)}{\theta} \frac{b \theta \gamma}{b - a} \frac{m \beta}{b - a} \left(\frac{b(m \beta)}{b - a} \right)^{x - 1} \]

\[= \frac{m(b - a)}{\theta} \frac{b \theta \gamma}{b - a} \frac{m \beta}{b - a} \left(\frac{b(m \beta)}{b - a} \right)^{x - 1} \]

g(\varepsilon) = \left(\frac{a}{b} \right)^{\gamma - 1} \]

و گشتاورها و گشتاورهای ناقص توزیع (EU-PD) مدل معرفی شده ارائه می‌شوند و لیستی از آن به ارائه بست (e) که در محاسبه

\[g(\varepsilon) = \left(\frac{a}{b} \right)^{\gamma - 1}. \]

\[\begin{align*} 1.3 \text{ گشتاورها و گشتاورهای ناقص توزیع} \end{align*} \]

در این بخش گشتاورها و گشتاورهای ناقص توزیع (EU-PD) می‌شود و لیستی از آن به ارائه بست (e) که در محاسبه

\[g(\varepsilon) = \left(\frac{a}{b} \right)^{\gamma - 1}. \]
در این قسمت معادلات منحني لورنتز و معادلات منحني بونفروئی
ارائه خواهد کرد که کاربردهایی برای انتقال برای بررسی
در آن واقعیت، ابزار اطمینان، پژوهشی و بهبود دارد. منحنی لورنتز،
araticت این نسبت تجربه دارندگان درآمده و نسبت تجربه در آن در
دریافت شده توسط آن‌ها بنا می‌شود. بی‌رویه شرط آن که دارندگان
درآمده بر حسب میزان درآمده با ترتیب صعودی مربیت شده
باشند. به این ترتیب، هک نطقه از منحنی لورنتز مناسب است. از کل
درآمده جامعه است که توسط نسبتی از افراد جامعه کسب شده
است که دارای مقدار معین درآمده و آماده از آن هستند. اگر
دارای توزیع از رابطه (2) باشد، آن‌گاه معادلات
منحني بونفروئی به صورت زیر است:

\[B_F[F(x)] = \frac{1}{\mu F(x)} \int u f(u) du = \frac{1}{\mu [1 - \frac{b + m \theta}{a - m \theta} \gamma]} \left[\frac{(m b + m \theta)^{x_j}}{x_j} \right] \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{\gamma - j}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \frac{b m}{b - a} \]

و منحنی لورنتز نیز به صورت زیر بوده بود:

\[L_F[F(x)] = B_F[F(x)] = \frac{1}{\mu} \int_{x}^{\infty} u f(u) du = \frac{1}{\mu [1 - \frac{b + m \theta}{a - m \theta} \gamma]} \left[\frac{(m b + m \theta)^{x_j}}{x_j} \right] \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{\gamma - j}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \frac{b m}{b - a} \]

2. میانگین انحراف‌ها منحني لورنتز و معادلات منحنی بونفروئی

اگر X دارای توزیع رابطه (2) باشد، آن‌گاه انحراف‌های میانگین
از رابطه زیر به دست می‌آید:

\[\delta(x) = \int_{x}^{\infty} |x - M| f(x) dx = 2 \mu M (M - x) F(x - M) \]

4. تابع ماکسیمم درستنمایی (EU-PD)

آگر X1, X2, ..., Xn نمونه‌های تصادفی از توزیع (EU-PD) با نماد
باشند، آن‌گاه تابع ماکسیمم درستنمایی این توزیع به صورت

\[g(X) = \left[\frac{b \theta^n}{m^{x_j}} \right] \frac{1}{\gamma - 1} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \left[\frac{(m b + m \theta)^{x_j}}{x_j} \right] \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

\[L = \prod_{i=1}^{n} \left[\frac{b \theta^n}{m^{x_j}} \right] \left[\frac{(m b + m \theta)^{x_j}}{x_j} \right] \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

کاربرد دارند. اگر X دارای توزیع رابطه (2) باشد، آن‌گاه دارم:

\[\int_{x}^{\infty} x^r g(x) dx = \int_{x}^{\infty} x^r \left[\frac{b \theta^n}{m^{x_j}} \right] \left[\frac{(m b + m \theta)^{x_j}}{x_j} \right] \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

\[= \sum_{j=1}^{\infty} \left(\frac{b \theta^n}{m^{x_j}} \right) \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

\[\times \left[\frac{b \theta^n}{m^{x_j}} \right] \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

\[= \sum_{j=1}^{\infty} \left(\frac{b \theta^n}{m^{x_j}} \right) \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

\[\times \left[\frac{b \theta^n}{m^{x_j}} \right] \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

\[= \int_{x}^{\infty} x^r g(x) dx = \sum_{j=1}^{\infty} \left(\frac{b \theta^n}{m^{x_j}} \right) \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

\[\times \left[\frac{b \theta^n}{m^{x_j}} \right] \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

\[= \sum_{j=1}^{\infty} \left(\frac{b \theta^n}{m^{x_j}} \right) \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]

\[\times \left[\frac{b \theta^n}{m^{x_j}} \right] \frac{1}{\gamma - 1} \sum_{j=1}^{\infty} \frac{(\gamma - j)}{j} \frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \left[\frac{(b m)^{x_j}}{j} \frac{b \theta^n}{m^{x_j}} \right] \frac{b m}{b - a} \gamma \]
اتاس تقیب نرمال اکانت‌نگری است. توزیع نرمال چندمتغیره نمی‌تواند برای ایجاد باره‌های اطلاعاتی دو‌طرفه \(\eta \) درصدی برای پارامترها مدل به کار رود که \(\eta \) سطح معناداری است.

در تحلیل لگاریتمی تابع درست‌نمایی به‌صورت زیر است:

\[
l(a, b, \theta, m, \gamma) = \sum_{i=1}^{n} \log \left[\frac{b \cdot \theta^{\gamma}}{b - a} \right] + (\gamma - 1) \sum_{i=1}^{n} \log \left[1 - \frac{b \cdot \theta^{\gamma}}{b - a} \right]
\]

با مشتق گیری از رابطه (14) نسبت به پارامترها داریم:

\[
\frac{\partial l}{\partial a} = \sum_{i=1}^{n} \left[\frac{b \cdot \theta^{\gamma}}{b - a} \right] + (\gamma - 1) \sum_{i=1}^{n} \left[1 - \frac{b \cdot \theta^{\gamma}}{b - a} \right]
\]

\[
\frac{\partial l}{\partial b} = \sum_{i=1}^{n} \left[\frac{b \cdot \theta^{\gamma}}{b - a} \right] + (\gamma - 1) \sum_{i=1}^{n} \left[1 - \frac{b \cdot \theta^{\gamma}}{b - a} \right]
\]

\[
\frac{\partial l}{\partial m} = \sum_{i=1}^{n} \left[\frac{b \cdot \theta^{\gamma}}{b - a} \right] + (\gamma - 1) \sum_{i=1}^{n} \left[1 - \frac{b \cdot \theta^{\gamma}}{b - a} \right]
\]

\[
\frac{\partial l}{\partial \gamma} = \sum_{i=1}^{n} \left[\frac{b \cdot \theta^{\gamma}}{b - a} \right] + (\gamma - 1) \sum_{i=1}^{n} \left[1 - \frac{b \cdot \theta^{\gamma}}{b - a} \right]
\]

برآورد ماکسیمم درست‌نمایی پارامترها با برای کاربر در قرار دادن عبارات با و با استفاده از حل تابع غیرخطی به دست می‌آید که دارای گامی می‌باشند. برای این مدل، فاصله اطلاعات و آزمون ضعیف آماری روت پارامترها، نهایی به ماتریس اطلاع است. ماتریس اطلاع مشاهده‌های بسیار زیر این است:

\[
J(\theta) = \begin{bmatrix}
I_{aa} & I_{ab} & I_{a\theta} & I_{a\gamma} \\
I_{ab} & I_{bb} & I_{b\theta} & I_{b\gamma} \\
I_{a\theta} & I_{b\theta} & I_{\theta\theta} & I_{\theta\gamma} \\
I_{a\gamma} & I_{b\gamma} & I_{\theta\gamma} & I_{\gamma\gamma}
\end{bmatrix}
\]

که \(\theta = (a, b, \theta, m, \gamma) \) عبارات واضح برای عناصر ماتریس اطلاع مشاهده‌های وجود دارد که از مشتق دوم گزارنده تابع درست‌نمایی نسبت به پارامترها به دست می‌آید. تحت شرایطی که پارامترها در خارج از فضای پارامتری انجام می‌شود اما نه روی مرزها، توزیع متجانس \(N(\theta, I^{-1}(\theta)) \) است که (\(N \)) ماتریس اطلاع مورد انتظار است. استنباط متجانس برای بردار پارامترها تحت شرایط نظم [14] بر
کمترین مقدار (مدل ارائه‌شده بهترین برآورد برای مجموعه‌داده‌ها فراهم می‌گردد. شایان ذکر است که توزیع‌های لژندر در جدول، یک توزیع چپ‌وارمترا است که برای داده‌های طول عمر مناسب بوده و نسبت به بعضی از توزیع‌ها در بسیاری از چگالی‌های تابع چگالی، نام‌شکست و میانگین طول عمر باقی مانده از انطباعات بیشتری بخودی دارد. یا چگالی این توزیع به صورت زیر است:

\[f_L(x) = \frac{\beta^x}{\Gamma(\beta)} (1 + x)e^{-\beta x}, \quad x \geq 0, \beta > 0 \]

به منظور ارزیابی عملکرد روش ماکسیمم درستنمایی، مطالعه شیب‌سازی به‌کمک 1000 بار با استفاده از نرم‌افزار R انجام می‌شود. ارزیابی برآوردهای میانگین مورد نظر انجام می‌شود:

\[\hat{m} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

به صورت (۷) تعیین می‌شوند. مقدار اریبی و میانگین توان دوم خطای تجربی و برآورد ماکسیمم درستنمایی به‌رازهای هر داده شیب‌سازی برای

\[i = 1, 2, \ldots, n \]

ژدول ۱. برآورد ماکسیمم درستنمایی پارامترها و آزمون نیکوکی برآورد برای مجموعه‌داده‌های واقعی

<table>
<thead>
<tr>
<th>BIC</th>
<th>AIC</th>
<th>(K - S)</th>
<th>برآوردها</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>γ</td>
</tr>
<tr>
<td>149.27</td>
<td>154.27</td>
<td>0.0015</td>
<td>0.94</td>
</tr>
<tr>
<td>176.71</td>
<td>182.71</td>
<td>0.0277</td>
<td>0.91</td>
</tr>
<tr>
<td>152.72</td>
<td>155.72</td>
<td>0.0937</td>
<td>0.99</td>
</tr>
<tr>
<td>153.30</td>
<td>155.30</td>
<td>0.0319</td>
<td>0.92</td>
</tr>
<tr>
<td>189.45</td>
<td>194.45</td>
<td>0.0322</td>
<td>0.93</td>
</tr>
</tbody>
</table>
جدول ۲ مقدار اریب و میانگین توان دوم خطاهای برآورد است تحت روش ما کسیم درست نمایی

<table>
<thead>
<tr>
<th>متغیرهای x</th>
<th>میانگین توان دوم خطاهای برآورد است</th>
<th>مقدار اریب</th>
<th>مقدار ا ينبغي</th>
<th>اندازه نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۰.۵</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۲</td>
<td>۰.۵</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۳</td>
<td>۰.۵</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۴</td>
<td>۰.۵</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۵</td>
<td>۰.۵</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۶</td>
<td>۰.۵</td>
<td>۲</td>
<td>۳</td>
<td>۴</td>
</tr>
</tbody>
</table>

همچنین موضع‌های استباثی‌ای برای تحقیق در آینده را فراهم آورده‌ایم. برخی از این موضع‌ها عبارتند از: برآوردی‌های پیش‌پارامترهای، برآوردی‌های براورندی‌های، برآوردی‌های توزیعی و...

