توزیع پارتو یکنواخت و توزیع پارتو یکنواخت نمایش ده

و کاربردهای آنها در داده‌های درآمد

آینتا عبداللله تانوایش، آزیتا عبداللله تانوایش

تاریخ دریافت: 1397/1/25

تاریخ پذیرش: 1397/8/24

چکیده:

در این مقاله، یک توزیع جدید معرفی می‌گردد که تمایلی از یک توزیع شناخته شده است. این توزیع انعکاس پذیر بوده و در مدل‌پذیری داده‌های درآمد، کاربرد دارد. در اینجا برخی از ویژگی‌های ریاضی و توزیع‌یابی یک گروه جدید ارائه می‌شود و سپس برای نشان دادن انعکاس پذیری توزیع جدید، کاربردهایی از این توزیع در داده‌های واقعی ارائه شده. نتایج برآوری داده‌های نیز مناسب بودن این گروه جدید را برای مجموعه‌های داده‌ای واقعی در نظر گرفته شده تا نیاز مکنن.

واژه‌کلیدی: توزیع پارتو، توزیع پارتو یکنواخت نمایش ده، چندگی، گسترش، آنتروپی، می‌لایه اطمنان

1 مقدمه

با توجه به این که آمار یکی از مهم‌ترین علوم کاربرده است، که با سایر رشته‌های علمی از جمله اقتصاد مرتبط است، از این رو در سال‌های اخیر، علاقه‌ریزی برای تحقیقات در زمینه مدل‌های پارامتری توزیع درآمد به وجود آمده است. مدل‌های احتمال مربوط به توزیع درآمد، برای ارزیابی استانداردهای سطح زندگی کل مردم یک کشور و همچنین برای مقایسه استاندارد سطح زندگی طبقات اجتماعی و یا مناطق مختلف یک کشور ارائه شده‌اند. با این وجود برای ایجاد یک مدل احتمالی ارائه یک تابع توزیع نظیر با مشخصه توزیع فرآیند تجربی برای انتخاب روش مناسب تخمین داده‌های پارامتری مدل، ضروری است. بنابراین تحلیل آماری توزیع درآمد جمعیت ناشناخته زندگی یک با این تحقیق گری در مورد بودجه و سیاست‌های اجتماعی است. در این مقاله توزیع جدید ارائه شده است که علاوه بر انعکاس پذیری یک توزیع مناسب برای مدل‌سازی داده‌های درآمد است. شناسایی یک توزیع مناسب برای مدل‌سازی مجموعه‌های درآمد در تحلیل‌های آماری باید اهمیت است. منشأ کردن

1 دانشجوی ارشد، کارشناسی ارشد آمار، دانشگاه علوم طبیعی‌های ایران
2 دانشجوی دکتری مکاتبات، دانشگاه تهران، ایران
را به‌اکنون مقادیر مختلف پارامترها نشان می‌دهد که بصورت
یک‌ویژه غیرکامی است و در نقطه یک پایدار می‌شود.

اگر تابع توزیع تجمعی توزیع (U-PD) به‌صورت رابطه (1) باشد، در این صورت نتایج چگالی احتمال این توزیع بصورت
زیر است:
\[
g(x) = \frac{b}{b-a} x^{\theta m} \quad m(b-a)^{-\theta} < x < \infty \quad (2)
\]

تابع باقی و تابع نرخ خطر (نرخ خطر معیاری است برای سنجدن
شکست یک سیستم در یک باره زمانی مشخص) این توزیع نیز
برترین بصورت زیر هستند:
\[
S(x) = \frac{b(b-a)^x}{b-a} \quad \frac{b(b-a)^x}{b} \quad \frac{b(b-a)^x}{b-a} \quad \frac{b(b-a)^x}{b-a}
\]

2 مدل جدید

فرض کنید یک متغیر تصادفی با توزیع پارتون یک‌ویژه باشد
(U-PD) در این صورت تابع توزیع تجمعی آن بصورت زیر
است [7]:
\[
G(X) = 1 - \frac{b(b-a)^x}{b-a} \quad m(b-a)^{-\theta} < x < \infty \quad (1)
\]

به‌کمک پارامترهای مClaims و \(\theta \) که \(-\infty < a \leq b < \infty \) پارامتر مشخص است. شکل 1 نمودار تابع توزیع تجمعی این توزیع

شکل 1. تابع توزیع تجمعی پارتون یک‌ویژه به‌ازای مقادیر مختلف پارامترها

شکل 2. تابع چگالی احتمال توزیع (U-PD) به‌ازای مقادیر مختلف پارامترها

می‌شود. در بخش (1)، خواص آماری توزیع جدید مورد بحث
قرار می‌گیرد و در بخش (5)، پارامترهای توزیع جدید با استفاده
از روش برآورد ماکسیمم درست‌نمایی محاسبه و بین می‌شوند
و در نهایت در بخش (6) کاربردهای از مدل جدید با
استفاده از دو مجموعه داده‌های واقعی و نتایج شبیه‌سازی ارائه
می‌شود.
تابع نرخ خطر این توزیع نیز به صورت زیر است:

\[
h(x) = \frac{(b-a)^m x^a}{b^m (x-b)^m} \left(1 - \frac{b}{b-a} \right)^{-1}
\]

در شکل‌های زیر نمودار تابع چگالی احتمال و تابع نرخ خطر توزیع جدید به‌شکل شکل (1) باشد، در این صورت تابع نرخ خطر تابع (EU-PD) به صورت زیر است:

\[
h(x) = \frac{(b-a)^m x^a}{b^m (x-b)^m} \left(1 - \frac{b}{b-a} \right)^{-1}
\]

در شکل‌های زیر نمودار تابع چگالی احتمال این توزیع را نشان می‌دهد، که تابع چگالی احتمال این توزیع به صورت یک نواع غیر افزایش است. حال فرض بگذارید X دارای تابع توزیع تجمعی به صورت رایع (1) باشد، در این صورت تابع توزیع توابع شده:

\[
G(X) = \left[1 - \frac{b}{b-a} \right]^\gamma, \quad m\left(\frac{b-a}{b} \right)^{-\gamma} < x < \infty
\]

تابع چگالی احتمال این توزیع با مشتاق گیری از رابطه بالا به صورت زیر به دست می‌آید:

\[
g(x) = \left[\frac{b \gamma}{b-a} x^{\gamma-1} - \frac{b}{b-a} \right] \left[1 - \frac{b}{b-a} \right]^\gamma, \quad m\left(\frac{b-a}{b} \right)^{-\gamma} < x < \infty
\]
گشتاورها مورد نیاز این است، پرداخته می‌شود. اگر
\[g(x) = \left[\frac{b^\gamma m^\theta}{b-a} x^\theta + 1 \right] \left[1 - \frac{b(x)^\theta}{b-a} \right]^{\gamma-1}, \]
در این صورت بسط آن به صورت:
\[g(x) = \left[\frac{b^\gamma m^\theta}{b-a} x^\theta + 1 \right] \sum_{j=0}^{\infty} \left(\frac{\gamma-1}{j} \right) \left(\frac{b(x)^\theta}{(b-a)^\theta} \right)^j \]
و بطور مشابه بسط تابع توزیع آن نیز به صورت زیر است:
\[G(x) = \left[1 - \frac{b(x)^\theta}{b-a} \right]^{-\gamma} \]
\[G(x) = \sum_{j=0}^{\infty} \left(\gamma-1 \right) \left(\frac{b(x)^\theta}{(b-a)^\theta} \right)^j \left[\frac{b(x)^\theta}{b-a} \right]^{-\gamma} \] (V)
در این صورت گشتاور مربوط به توزیع (EU-PD) به صورت زیر محاسبه می‌شود:
\[E[X^r] = \int_{x=0}^{\infty} x^r \frac{b^\gamma m^\theta}{b-a} x^\theta + 1 \sum_{j=0}^{\infty} \left(\frac{\gamma-1}{j} \right) \left(\frac{b(x)^\theta}{(b-a)^\theta} \right)^j \frac{b(x)^\theta}{b-a} m^\theta \]
\[E[X^r] = \int_{x=0}^{\infty} x^r \frac{b^\gamma m^\theta}{b-a} x^\theta + 1 \sum_{j=0}^{\infty} \left(\frac{\gamma-1}{j} \right) \left(\frac{b(x)^\theta}{(b-a)^\theta} \right)^j \frac{b(x)^\theta}{b-a} m^\theta \]
\[E[X^r] = \frac{(m(b-a)^\theta - b(x)^\theta)}{\theta r + 1 - \theta} \sum_{j=0}^{\infty} \left(\frac{\gamma-1}{j} \right) \left(\frac{b(x)^\theta}{(b-a)^\theta} \right)^j \frac{b(x)^\theta}{b-a} m^\theta \] (8)
پنا بر این گشتاور اول توزیع جدید به صورت زیر است:

\[E[X] = \frac{(m(b-a)^\theta - b(x)^\theta)}{\theta r + 1 - \theta} \sum_{j=0}^{\infty} \left(\frac{\gamma-1}{j} \right) \left(\frac{b(x)^\theta}{(b-a)^\theta} \right)^j \frac{b(x)^\theta}{b-a} m^\theta \]

به همین ترتیب سایر گشتاورها نیز با استفاده از رابطه (8) و

\[E(X^r) = \frac{b^r/\theta m^\theta}{(b-a)^\theta (\theta - r)}. \]

حال در این بخش برخی از خواص آماری توزیع (EU-PD) مانند گشتاورها و گشتاورهای ناقص، میانگین انحراف هماهنگ و معادلات منحنی بونفوردوی به ارائه می‌دهد.

1.3 گشتاورها و گشتاورهای ناقص توزیع

در این بخش گشتاورهای مدل معیارهای (EU-PD) به ارائه می‌شود و در محاسبه g(x) از آن به ارائه بسط (8) که در محاسبه
در این قسمت معادلات منحنی لورنزن و معادلات منحنی بونفرانی ارائه خواهد کرد که کاربردهای زیادی در اقتصاد بررسی درآمدها و قابلیت اطمینان پزشکی و بهم یاری دارند. منحنی لورنزن، ارتباط بین نسبت تجمعی دارندگان درآمد و نسبت تجمعی درآمدهای هر آن دارندگان درآمدها را به صورت شرط توسط آنها بیان می‌دهد. به این ترتیب، هم نطفه از منحنی لورنزن می‌تواند از کل درآمدها جمعه اینکه توسط نسبتی از فاکتور جمعه کسب شده است که داري یافتن معنی درآمدی و یا کمتر از آن هستند. اگر دارای توزیع ارائه‌شده در رابطه (2) باشد، آن‌گاه معادلات منحنی بونفرانی به صورت زیر است:

\[
B_F[F(x)] = \frac{1}{\mu} \int_x^\infty u f(u) \, du
= \frac{1}{\mu \left[1 - \frac{b}{b - a} \right]} \left[\frac{(m(b/a)^j - \gamma)}{\gamma j + 1 - \theta} \right] ^j \sum_{j=0}^{\infty} \left(-1 \right)^j \left(b(m)^j \right)^j - \frac{b \theta \gamma}{b - a} m^j
\]

(12)

و معادلات لورنزن نیز به صورت زیر خواهد بود:

\[
L_F[F(x)] = B_F[F(x)] = \frac{1}{\mu} \int_x^\infty u f(u) \, du
= \frac{1}{\mu \left[1 - \frac{b}{b - a} \right]} \left[\frac{(m(b/a)^j - \gamma)}{\gamma j + 1 - \theta} \right] ^j \sum_{j=0}^{\infty} \left(-1 \right)^j \left(b(m)^j \right)^j - \frac{b \theta \gamma}{b - a} m^j
\]

(13)

(4) تابع ماکسیمم درستنمایی (MLE)

به‌دست‌آید (EU-PD) اگر \(X_1, \ldots, X_n\) نمونه‌ای تصادفی از توزیع باشد، آن‌گاه تابع ماکسیمم درستنمایی این توزیع به صورت زیر است:

\[
g(X) = \left[\frac{b \theta \gamma}{b - a} \right] ^m \left[1 - \frac{b(m)^j}{b - a} \right] ^{\gamma - 1}
L = \prod_{i=1}^{n} \left[\frac{b \theta \gamma}{b - a} \right] ^{m_i} \prod_{i=1}^{n} \left[1 - \frac{b(m)^j}{b - a} \right] ^{\gamma - 1}.
\]

کاربرد دارند. اگر \(X\) دارای توزیع رابطه (2) باشد، آن‌گاه داریم:

\[
\int_{x}^{w} x^r g(x) \, dx = \int_{x}^{w} x^r \left[\frac{b \theta \gamma}{b - a} \right] ^m \left[1 - \frac{b(m)^j}{b - a} \right] ^{\gamma - 1} \times \sum_{j=0}^{\infty} \left(-1 \right)^j \left(b(m)^j \right)^j - \frac{b \theta \gamma}{b - a} m^j \, dx
= \int_{x}^{w} x^{\gamma - 1} \left[\frac{b \theta \gamma}{b - a} \right] ^m \left[1 - \frac{b(m)^j}{b - a} \right] ^{\gamma - 1} \times \sum_{j=0}^{\infty} \left(-1 \right)^j \left(b(m)^j \right)^j - \frac{b \theta \gamma}{b - a} m^j \, dx
\]

\[
= \int_{x}^{w} x^{-\theta j + r - \theta} \sum_{j=0}^{\infty} \left(-1 \right)^j \left(b(m)^j \right)^j - \frac{b \theta \gamma}{b - a} m^j \, dx
\]

(9)

2.3 میانگین انحراف‌ها منحنی لورنزن و معادلات منحنی بونفرانی

اگر \(X\) دارای توزیع رابطه (2) باشد، آن‌گاه میانگین انحراف‌ها از رابطه زیر به دست می‌آید:

\[
\delta(x) = \int_{x}^{\infty} |x - M| f(x) \, dx = \mu F(M) - M + \mu - \mu(\mu)
= \mu \sum_{j=0}^{\infty} \left(\frac{1}{j} \right) \left(-1 \right)^j \left(b(m)^j \right)^j - \frac{b \theta \gamma}{b - a} m^j \]

\[
\times \sum_{j=0}^{\infty} \left(-1 \right)^j \left(b(m)^j \right)^j - \frac{b \theta \gamma}{b - a} m^j \]

(10)

که \(\delta(x)\) به‌طور کلی به صورت زیر است:

\[
\delta(x) = \int_{x}^{\infty} |x - \mu| f(x) \, dx = \mu F(\mu) - \mu(\mu)
= \mu \sum_{j=0}^{\infty} \left(\frac{1}{j} \right) \left(-1 \right)^j \left(b(m)^j \right)^j - \frac{b \theta \gamma}{b - a} m^j \]

\[
\times \sum_{j=0}^{\infty} \left(-1 \right)^j \left(b(m)^j \right)^j - \frac{b \theta \gamma}{b - a} m^j \]

(11)
6 توزیع پارتیو یکنواخت و توزیع پارتیو یکنواخت نمایش شده و...

آیین‌نامه ناتوانی و آیین‌نامه ناتوانی...

اساس تقریب نرم‌البینیر است. توزیع نرم‌البینیر می‌تواند برای ایجاد ایجاد ایجاد ایجاد اطلاعاتی اطلاعاتی اطلاعاتی دوطرفه

دیده در صدر بروز پارامترهای مدل به کار رود که

سطح معناداری است.

در نتیجه لگاریتم تابع درستنمایی به صورت زیر است:

\[
l(a, b, \theta, m, \gamma) = \sum_{i=1}^{n} \log \left[\frac{b^{\theta} \gamma}{b-a} \frac{m^\theta}{\sum_{i=1}^{n} x_i^{\theta}} \right] + (\gamma - 1) \sum_{i=1}^{n} \log \left[1 - \frac{b^{\theta} \gamma}{b-a} \right] \]

(14)

با مشتق‌گیری از رابطه (14) نسبت به پارامترها داریم:

\[
\frac{\partial l}{\partial a} = \sum_{i=1}^{n} \frac{(b-a) \gamma}{b-a} \frac{m^\theta}{\sum_{i=1}^{n} x_i^{\theta}} + (\gamma - 1) \sum_{i=1}^{n} \frac{b^{\theta} \gamma}{b-a} \frac{x_i^{\theta}}{\sum_{i=1}^{n} x_i^{\theta}}
\]

\[
\frac{\partial l}{\partial b} = \sum_{i=1}^{n} \frac{(b-a) \gamma}{b-a} \frac{m^\theta}{\sum_{i=1}^{n} x_i^{\theta}} + (\gamma - 1) \sum_{i=1}^{n} \frac{b^{\theta} \gamma}{b-a} \frac{x_i^{\theta}}{\sum_{i=1}^{n} x_i^{\theta}}
\]

\[
\frac{\partial l}{\partial \theta} = \sum_{i=1}^{n} \frac{\gamma}{\sum_{i=1}^{n} x_i^{\theta}} + (\gamma - 1) \frac{1}{\sum_{i=1}^{n} x_i^{\theta}}
\]

\[
\frac{\partial l}{\partial m} = \sum_{i=1}^{n} \frac{\gamma}{\sum_{i=1}^{n} x_i^{\theta}} + (\gamma - 1) \frac{1}{\sum_{i=1}^{n} x_i^{\theta}}
\]

\[
\frac{\partial l}{\partial \gamma} = \sum_{i=1}^{n} \frac{\gamma}{\sum_{i=1}^{n} x_i^{\theta}} + (\gamma - 1) \frac{1}{\sum_{i=1}^{n} x_i^{\theta}}
\]

پایداری مکسیمم درستنمایی پارامترها با پایین چرخنده داده با استفاده از حل تابع غیرخطی به دست می‌آید که دارای یک ضریب اصلی محاسبه‌ی آن جایگزین به پارامترها، نیاز به ماتریس اطلاعات است. ماتریس اطلاعات مشاهده‌ی بهجای زیر است:

\[
J(\theta) = \begin{bmatrix}
I_{aa} & I_{ab} & I_{a\theta} & I_{am} & I_{a\gamma} \\
I_{ba} & I_{bb} & I_{b\theta} & I_{bm} & I_{b\gamma} \\
I_{a\theta} & I_{b\theta} & I_{\theta \theta} & I_{\theta m} & I_{\theta \gamma} \\
I_{am} & I_{bm} & I_{\theta m} & I_{mm} & I_{m\gamma} \\
I_{a\gamma} & I_{b\gamma} & I_{\theta \gamma} & I_{m\gamma} & I_{\gamma \gamma}
\end{bmatrix}
\]

که \(\hat{\theta} = (a, b, \theta, m, \gamma) \) عبارات واضحی برای عنصر ماتریس اطلاعات مشاهده‌ی وجود دارد که از مشتق دوم لگاریتم تابع درستنمایی نسبت به پارامترها به دست می‌آید. تحت شرایطی که برای پارامترها در خارج از فضای پارامتری انتخاب می‌شود اما نه روز مرزهای توزیع مجانیی \(\theta \) همگرایی به توزیع \(N(\theta, I^{-1}(\theta)) \)

استیستی مجانیی برای بردار پارامترها تحت شرایط اندازه‌گیری است.
کمترین مقدار (مدل ارائه‌شده بهترین برآوره برای مجموعه‌داده‌ها فراهم می‌کند. شایع‌ترین گونه است که توسعه یافته در جدول، یک توزیع نکوکاری است که برای داده‌های طول عمر مناسبی در بیشتری از رویه نظر تابع چگالی، نسبت نسبي و نیمه‌بلند طول عمر می‌باشد. از این نظر باید بررسی پرداخته باشد.

زاویه به‌صورت زیر است:

\[f_L(x) = \frac{\beta}{1+\beta} (1 + x)^{-1}e^{-\beta x}, \quad x \geq 0, \beta > 0 \]

به‌منظور ارزیابی عملکرد روش مکسیمم درست‌نمایی، مطالعه شیب‌سازی با تکرار 1000 بار با استفاده از نرم‌افزار R انجام می‌شود. ارزیابی برآوردها بر مبنای موارد زیر انجام می‌شود:

- میانگین توام دوم خطاهای نمایی و برآورده مکسیمم درست‌نمایی به‌راز داده شده سایه‌سازی برای

\[i = 1, \ldots, \infty \]

به‌صورت (\(\gamma, \beta, \theta \), \(\gamma \)) تبعین می‌شود. مقدار اریبی و نیمه‌بلند توام دوم خطاهای از فرمول‌های زیر به دست می‌آید:

\[bias_h(n) = \frac{1}{\infty} \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} (h_i - h) \]

\[MSE_h(n) = \frac{1}{\infty} \sum_{i=1}^{\infty} (h_i - h) \]

جدول 1: برآوردهای مکسیمم درست‌نمایی پارامترها و آزمون نیکوکار برآوره برای مجموعه‌داده‌های واقعی

<table>
<thead>
<tr>
<th>BIC</th>
<th>AIC</th>
<th>(K-S)</th>
<th>برآوردها</th>
<th>مدل</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>m</td>
<td>θ</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>148.39</td>
<td>157.39</td>
<td>0.7457</td>
<td>0.9984</td>
<td>0.9956</td>
</tr>
<tr>
<td>147.12</td>
<td>168.32</td>
<td>0.9676</td>
<td>0.9987</td>
<td></td>
</tr>
<tr>
<td>146.20</td>
<td>-0.75</td>
<td>0.9680</td>
<td>-0.3289</td>
<td></td>
</tr>
<tr>
<td>145.00</td>
<td>-0.76</td>
<td>-0.3289</td>
<td></td>
<td></td>
</tr>
<tr>
<td>144.00</td>
<td>143.00</td>
<td>142.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>143.00</td>
<td>142.00</td>
<td>141.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>142.00</td>
<td>141.00</td>
<td>140.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول ۱: برآوردهای مکسیمم درست‌نمایی پارامترها و آزمون نیکوکار برآوره برای مجموعه‌داده‌های واقعی
7 توزیع پارتو یکنواخت و توزیع پارتو یکنواخت نمایش روشن نمایش توزیع پارتو یکنواخت نمایش توزیع پارتو یکنواخت نمایش توزیع پارتو یکنواخت... آمیتا عبداللهی نانوییشه و آمیتا عبداللهی نانوییشه

جدول 2. مقادیر اریبی و میانگین توان دوم خطاهای برآورده تحت روش ماکسیم درستنمایی

<table>
<thead>
<tr>
<th>اریبی</th>
<th>میانگین توان دوم خطاهای برآورده</th>
<th>اندازه نمونه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

شکل 2. نمودارهای تابعی چگالی احتمال برآروش داده شده توزیع‌های در نظر گرفته به همراه بافت‌گشت برای مجموعه‌ها

باتوجه به تابع چگالی و تابع نرخ شکست خود، مکانیسم نسبتاً انعطاف‌پذیر برای برآورش طیف وسیعی از مجموعه‌داده‌های واقعی مثبت (داده‌های در آماده) فرامی کند و بنابراین می‌تواند چابزگی اساسی برای اگهی‌های موجود در مبانی، در گونه‌های داده‌های واقعی دارای اهداف اقتصادی، مهندسی، تحلیل بقا و هیدرولوژی باشد.

معنی‌نامه تجربی (EU-PD) برای مقادیر مختلف پارامترهای (n, b, θ, m, a) در اندازه نمونه برای ارائه شده. هر یک از مقادیر پارامترهای واقعی و نظری شکل و شکل وارون است.

نتیجه‌گیری

در این مقاله مدل جدیدی از توزیع (EU-PD) و ویژگی‌های آن ارائه شد. بدین مدل نسبت به سایر مدل‌ها دارای فرم‌های ساده توابع توزیع و چگالی به‌طور واضح بوده و با توجه به مقادیر پارامترهای دارای تابع نرخ خطر واتنه شکل و وانی شکل وارون است.
کمترین توان دوم قطری، بیش‌ترین مشاهده‌های آینده از آن توزیع و غیره.

مرجع

