یک تعمیم جدید از توزیع گومبرتز

شهرام بقوقبزاده شهرستانی

تاریخ دریافت: 1395/9/2
تاریخ پذیرش: 1396/1/30

چکیده:
در این مقاله، یک توزیع جدید طول عمر سپارامتری بر اساس توزیع گومبرتز به‌عنوان مارشال-الکین گومبرتز که تعمیمی از توزیع گومبرتز و دارای نرخ شکست‌های نزولی، صعودی و واگری و شکست‌های آماری‌های مرتب، آن‌ترپوئه‌های رنگ و شکن و تابع چندک به دست می‌آید، همچنین پارامترهای آن به‌روش ماکسیمیم درست‌نمایی بر آورده شده، به کمک یک مجموعه‌داده واقعی، این توزیع جدید برای روش‌های اصلی از توزیع‌های طول عمر بر اساس توزیع گومبرتز مقایسه می‌شود.

واژه‌های کلیدی: توزیع گومبرتز، تابع شکست، برآورد ماکسیمیم درست‌نما، توزیع مارشال-الکین گومبرتز.

1 مقدمه
تووزیع گومبرتز (1) نش مهمی در مدل‌بندی زمان‌های زنگ و میگ و مرگ بیشتر دارد (2 و 3). همچنین از کاربردهای دیگر توزیع گومبرتز می‌توان به کاربرد از علوم مختلف مانند زیست‌شناسی (3)، تحلیل بقا (4)، جامعه‌شناسی (5) و توزیع کامپیوتر (6) بازاریابی (7) اشاره کرد. از آن‌جا که تابع خطر توزیع گومبرتز ثابت و افزایشی است، تن می‌تواند به عنوان یک توزیع طول عمر برای مدل‌بندی پیده‌های با ربط خطر ثابت و غیر افزایشی مؤثر باشد. به‌همین صورت توزیع هر یک توزیع جدید و متناسب با مدل‌بندی توزیع گومبرتز می‌تواند به عنوان توزیع گامبرتز معرفی شود. از جمله این توزیع‌ها می‌توان به توزیع گامبرتز (8)، توزیع گامبرتز تعمیم‌یافته (9)، توزیع مکانیک‌دار گومبرتز (10)، گامبرتز-یوآنس (11) که یکی از توزیع‌های متعلق به خانواده توزیع‌های سری توانی گومبرتز (11) است، اشاره گردید. چون مدل‌بندی زمان‌های زنگ و میگ و مرگ بیشتر جاذب اهمیت بوده و توزیع گامبرتز کمی به‌عنوان توزیع طول عمر معرفی شده، هدف اصلی این مقاله آن است که یک توزیع جدید سپارامتری بر اساس توزیع گامبرتز با نرخ‌های شکست نزولی، صعودی و واگری و شکست‌های آماری‌های مرتب، آن‌ترپوئه‌های رنگ و شکن و تابع چندک به دست آورد.

2 توزیع مارشال-الکین گومبرتز
تابع توزیع تجمعی و تابع چگالی احتمال توزیع گومبرتز که با نام Gom (α, β) نماد می‌شود ممکن است.

\[
F(x) = 1 - e^{-\beta (e^{\alpha x} - 1)} \quad x > 0, \alpha > 0, \beta > 0
\]

(1)

\[
f(x) = \alpha \beta e^{\alpha x} e^{-\beta (e^{\alpha x} - 1)} \quad x > 0, \alpha > 0, \beta > 0
\]

(2)

قضیه 1.2: اگر X متغیری تصادفی با تابع چگالی احتمال (2) باشد، گشتاور مركزي مرتبه r ام آن بصورت زیر می‌باشد.

\[
G(x) = \int_{0}^{x} g(t) dt
\]

به جای

\[
F(x) = 1 - e^{-\beta (e^{\alpha x} - 1)} \quad x > 0, \alpha > 0, \beta > 0
\]

(1)

\[
f(x) = \alpha \beta e^{\alpha x} e^{-\beta (e^{\alpha x} - 1)} \quad x > 0, \alpha > 0, \beta > 0
\]

(2)

\[
G(x) = \int_{0}^{x} g(t) dt
\]

به جای

1 Gompertz
2 generalized integro-exponential function
و تابع خطر توزیع مارشال-الکین-گومپرتس نیز به صورت

\[h(x) = \frac{\alpha p e^{-\alpha x}}{1 - (1 - p)e^{-\frac{\alpha}{\beta}(e^{\beta x} - 1)}} \]

و تابع خطر توزیع مارشال-الکین-گومپرتس نیز به صورت

\[E(X^r) = \frac{\Gamma(r + 1)}{\beta^r} \int_0^\infty x^r e^{-\left(\frac{\alpha}{\beta} x\right)} dx \]

است.

\[h(x) = pe^{-\alpha x} \]

با استفاده از روش‌های مختلف، توزیع توابع‌های طول عمر در تحلیل بای‌ها و توانان نقشهٔ هم‌دیا را بررسی کرد.

\[F(x) = \frac{1 - G(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

\[f(x) = \frac{pg(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

با استفاده از روش‌های مختلف، توزیع توابع‌های طول عمر در تحلیل بای‌ها و توانان نقشهٔ هم‌دیا را بررسی کرد.

\[F(x) = \frac{1 - G(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

\[f(x) = \frac{pg(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

با استفاده از روش‌های مختلف، توزیع توابع‌های طول عمر در تحلیل بای‌ها و توانان نقشهٔ هم‌دیا را بررسی کرد.

\[F(x) = \frac{1 - G(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

\[f(x) = \frac{pg(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

با استفاده از روش‌های مختلف، توزیع توابع‌های طول عمر در تحلیل بای‌ها و توانان نقشهٔ هم‌دیا را بررسی کرد.

\[F(x) = \frac{1 - G(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

\[f(x) = \frac{pg(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

با استفاده از روش‌های مختلف، توزیع توابع‌های طول عمر در تحلیل بای‌ها و توانان نقشهٔ هم‌دیا را بررسی کرد.

\[F(x) = \frac{1 - G(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

\[f(x) = \frac{pg(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

با استفاده از روش‌های مختلف، توزیع توابع‌های طول عمر در تحلیل بای‌ها و توانان نقشهٔ هم‌دیا را بررسی کرد.

\[F(x) = \frac{1 - G(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

\[f(x) = \frac{pg(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

با استفاده از روش‌های مختلف، توزیع توابع‌های طول عمر در تحلیل بای‌ها و توانان نقشهٔ هم‌دیا را بررسی کرد.

\[F(x) = \frac{1 - G(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

\[f(x) = \frac{pg(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

با استفاده از روش‌های مختلف، توزیع توابع‌های طول عمر در تحلیل بای‌ها و توانان نقشهٔ هم‌دیا را بررسی کرد.

\[F(x) = \frac{1 - G(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]

\[f(x) = \frac{pg(x)}{1 - (1 - p)G(x)} \]

\[x > 0, \quad p > 0, \quad -\infty < x < \infty \]
شکل 1. نمودارهای تابع چگالی احتمال توزیع مارشال-الکین گامبرترز با مقدار مختلف (α, β, p).

شکل 2. نمودارهای تابع خطر مارشال-الکین گامبرترز با مقدار مختلف (α, β, p).

\[(\alpha, \beta, p) \]

1) گشتاورهای مرکزی

اگر متغیر تصادفی X دارای توزیع با تابع چگالی احتمال داده شده در رابطه (4) باشد، $f(x)$ با توجه به کاربرد رابطه (5) برای به‌صورت زیر پژوهیده می‌شود:

\[f(x) = \alpha e^{\beta x} \frac{\beta^\alpha}{e^{\beta x} \mathcal{L} \left(e^{\beta x} - 1 \right)^{\alpha}} \]

\[\times \sum_{j=0}^{\infty} (-1)^j (1-p)^j \left(\frac{\beta^\alpha}{e^{\beta x} \mathcal{L} \left(e^{\beta x} - 1 \right)^{\alpha}} \right)^j \]
2.2 آنتروپی‌های رنگ و شانون

آنتروپی یک متغیر تصادفی با تابع چگالی احتمال $F(x)$ باشد، آنتروپی رنگ $f(x)$ به صورت زیر تعیین می‌شود:

$$I(r) = \frac{1}{1-r} \log \left\{ \int_{-\infty}^{\infty} f'(x) dx \right\}, \quad r > 0, r \neq 1$$

تاریخچه $f(x)$ تابع چگالی احتمال توزیع مارشال-الکین گامبرتز باشد به کمک رابطه (5) داریم:

$$f'(x) = (ap)^r e^{r \beta x} \times \sum_{j=0}^{\infty} \left(\frac{r+j-1}{j} \right) (p-1)^j e^{-\frac{(r+j)\alpha}{\beta} x}.$$

$$\int_{-\infty}^{\infty} f'(x) dx = (ap)^r \times \sum_{j=0}^{\infty} \left(\frac{r+j-1}{j} \right) (p-1)^j \int_{-\infty}^{\infty} e^{r \beta x} e^{-\frac{(r+j)\alpha}{\beta} x} dx$$

$$= \int_{0}^{\infty} u^{-r} e^{-\frac{(r+j)\alpha}{\beta} u} du.$$

پویایی یک متغیر $u = e^{r \beta x}$ به کمک تاریخچه $f(x)$ داریم:

$$I_1 = \int_{0}^{\infty} e^{r \beta x} e^{-\frac{(r+j)\alpha}{\beta} x} dx = \int_{0}^{\infty} w^{-r} e^{-\frac{(r+j)\alpha}{\beta} u} du.$$

เครنیز $I_1 = E_{(r-1)} \left(\frac{(r+j)\alpha}{\beta} \right)$ که $r < 1$ باشد، خواهیم داشت $E_{(r)} z \leq x$ را اطلاعاتی پیش از درباره $E_{(r)} z \leq x$ به کمک تاریخچه I_1 به صورت زیر محاسبه می‌شود:

$$I_1 = \left[\frac{\beta}{(r+j)\alpha} \right]^r \left(1 - \Gamma \left(\frac{(r+j)\alpha}{\beta} \right) \right) = h(\alpha, \beta, j),$$

به طوری که Γ یک تاریخچه $f(x)$ باشد، $x \leq 1$ باشد، $

I = \int_{-\infty}^{\infty} f'(x) dx$

$$= \int_{0}^{\infty} \left[\sum_{j=0}^{\infty} \left(\frac{r+j-1}{j} \right) (p-1)^j e^{-\frac{(r+j)\alpha}{\beta} x} \right] (p-1)^i e^{-\frac{(r+j)\alpha}{\beta} x} dx$$

$$\times \sum_{j=0}^{\infty} \sum_{k=0}^{n-1} \sum_{s=0}^{j} \frac{(-1)^i e^{-\frac{(r+j)\alpha}{\beta} x} \left(e^{(r+j)s} - 1 \right) + (r+j+s)}{i+j+s}.$$

دریم:

$$E(X^r) = \frac{\Gamma \left(\frac{(r+j)\alpha}{\beta} \right)}{\Gamma \left(\frac{(r+j+1)\alpha}{\beta} \right)} \sum_{j=0}^{\infty} \sum_{k=0}^{n-1} \sum_{s=0}^{j} \frac{(-1)^i e^{-\frac{(r+j)\alpha}{\beta} x} \left(e^{(r+j+s)\alpha} - 1 \right) + (r+j+s)\alpha}{i+j+s} E_{(r)} \left(\frac{(r+j)\alpha}{\beta} \right).$$

2.2 گستاورهای آماره‌ای مرتب

آنتروپی یک متغیر تصادفی X_{in} با دستور X_{in} انتخاب گرایش به آن n تایی از توزیع با X_{in} تابع چگالی احتمال داده شده در رابطه (5) باشد، تابع چگالی احتمال $I_{in}(x)$ به صورت زیر به دست می‌آید:

$$f_{in}(x) = \frac{f(x)(F(x))^r-1(1-F(x))^r-1}{B(n, n-i+1)}, \quad x > 0.$$
شانون [19] به صورت $E(-\log f(X))$ تعیین می‌شود. البته آنتروپی شانون را نیز می‌توان از آنتروپی رنگ به‌کمک رابطه $\lim_{r \to +} I(r)$ به دست آورد.

4.2 تابع چندک

راه‌حل که در آن u می‌توان تابع توزیع تجمعی مارشال-الکین $F^{-1}(u)$ را با رابطه (7) در شیب‌سازی توزیع مارشال-الکین U برای $u \in (0, 1)$ به صورت زیر تعیین می‌شود.

$$Q(u) = F^{-1}(u) = \frac{-\log \left(\frac{1 - u}{1 - u(1-p)} \right)}{\beta}$$

با توجه به این که در آن $Q(u)$ دارای توزیعی $Q(U)$ است، نتایج استفاده از تابع چندک میزان کوچک‌تری توزیع مارشال-الکین-گوپرژت با توجه به [19] به صورت

$$K = \frac{Q(x; \alpha, \beta, p) - Q(x; \beta, \alpha, p)}{Q(x; \alpha, \beta, p) - Q(x; \beta, \alpha, p)}$$

$$S = \frac{Q(x; \alpha, \beta, p) - Q(x; \beta, \alpha, p)}{Q(x; \alpha, \beta, p) - Q(x; \beta, \alpha, p)}$$

حاصل می‌شود که برای توزیع نرمال استاندارد و توزیع تی استندارد N_x درجه آزادی مقادیر K و S برنامه‌ای صفر، مقادیر به‌طور معنی‌داری در حدود χ^2 و سویه از χ^2 باشند.

5.2 برآورد پارامترهای

در این بخش بر اساس نمونه‌گیری تصادفی X_1, \ldots, X_n از توزیع Θ، پارامترهای آن عنی α و β و به‌روش ماکسیمم دستی نیکلی برآورد می‌شود. بنابراین نتایج تابع دستی نیکلی به صورت زیر است:

$$\ell_n = \log L(x; \Theta) = n \log \alpha + n \log p + \sum_{i=1}^{n} x_i - \frac{\alpha}{\beta} \sum_{i=1}^{n} (e^{\beta x_i - 1}) - 2 \sum_{i=1}^{n} \log \left[\frac{(1 - (1-p)) e^{-\frac{\beta}{\alpha}(e^{\beta x_i - 1})}}{\beta} \right].$$

3 تحلیل داده‌ها واقعی

در این بخش با استفاده از یک مجموعه داده‌های واقعی، توزیع مارشال-الکین-گوپرژت با توزیع‌های مکدومندال-گوپرژت، گوپرژت تعیین یافت، نهایتاً، گوپرژت-پو آس، و گوپرژت-
و اطلاع آکائیکه سازگاری است و جدول ۳ شامل آماره‌های
نیکویی پراز و کرگونوسیازی و واتسون و کولموگوروف-
امسینون ۱ همان مقدار مربوط می‌باشد که کوکیچ تر بودن
مقادیر معیارهای اطلاع و آماره‌های آزمون نیکویی پراز برای
هر توزیع در مقایسه با جنده توزیع دقیق دیلی بر بیت تر بودن
آن توزیع می‌باشد. معیارهای اطلاع آکائیکه و آکائیکه سازگار
به ترتیب عبارتند از:

\[
AIC = -2 \ln(\hat{\theta}) + 2k
\]

\[
CAIC = -2 \ln(\hat{\theta}) + \frac{2k \ln n}{n - k - 1}
\]

که در آن \(\hat{\theta}\) مقیاس الگاریم نتایج درستنمایی برای راورد
ماکسیمم درستنمایی پارامترها و تعداد پارامترها و تعداد
مشاهدات است. آماره‌های نیکویی پراز و کرگونوسیازی،
واتسون و کولموگوروف-امسینون که به ترتیب با نام‌های
نشان داده می‌شود عبارتند از:

\[
T_{CM} = \frac{1}{\sqrt{n}} + \frac{n}{\sqrt{n}} \left[F(x_i, \hat{\alpha}, \hat{\beta}, \hat{\rho}) - \frac{1}{n} \right],
\]

\[
T_W = T_{CM} + \frac{n}{\sqrt{n}} \left[F(x_i, \hat{\alpha}, \hat{\beta}, \hat{\rho}) - \frac{1}{n} \right],
\]

\[
T_{K-S} = \max_{1 \leq i \leq n} \left[\frac{i - F(x_i, \hat{\alpha}, \hat{\beta}, \hat{\rho}), F(x_i, \hat{\alpha}, \hat{\beta}, \hat{\rho}) - \frac{i}{n} \right]
\]

\[
f_{MC}(x) = \frac{\alpha \beta x^{\alpha - 1} e^{-(x-\lambda)}}{B(\lambda, \rho, r)} \left(1 - e^{-\frac{1}{\rho} (x-\lambda)^\rho}\right)^{-1},
\]

\[
f_{GG}(x) = \frac{\alpha \beta x^{\alpha - 1} e^{-(x-\lambda)}}{B(\lambda, \rho, r)} \left(1 - e^{-\frac{1}{\rho} (x-\lambda)^\rho}\right)^{-1},
\]

\[
f_{BG}(x) = \frac{\alpha \beta x^{\alpha - 1} e^{-(x-\lambda)}}{B(\lambda, \rho, r)} \left(1 - e^{-\frac{1}{\rho} (x-\lambda)^\rho}\right)^{-1},
\]

\[
f_{GP}(x) = \frac{\alpha \beta x^{\alpha - 1} e^{-(x-\lambda)}}{1 - e^{-\rho}} - \frac{e^{-\rho x}}{1 - e^{-\rho}},
\]

\[
f_{GL}(x) = \alpha \beta x^{\alpha - 1} e^{-(x-\lambda)} \left(- \log(1 - p)\right)^{-1},
\]

\[
\left(1 - p \left[1 - e^{-\frac{1}{\rho} (x-\lambda)^\rho}\right]\right)^{-1},
\]

مقايسه ما شود که در آنها ۰ و در مقایسه با
یک مجموعه شاخص ۲۳ مقدار شده از مقاومت الاف
شیوه‌های پدر جدول ۱ سانی منزله ۱/۵ منطقه فیزیک
در انگلستان می‌باشد که در [۲۰] گزارش شده است. داده‌ها
به‌صورت جدول ۱ است.

جدول ۱ داده‌های مربوط به مقاومت الاف شیوه‌های با پذیرش
۱/۵ سانی متری

<table>
<thead>
<tr>
<th></th>
<th>۱/۰۲</th>
<th>۱/۰۱</th>
<th>۱/۰۰</th>
<th>۱/۰۲</th>
<th>۱/۰۳</th>
<th>۱/۰۴</th>
<th>۱/۰۵</th>
<th>۱/۰۶</th>
<th>۱/۰۷</th>
<th>۱/۰۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۰۲</td>
<td>۱/۰۴</td>
<td>۱/۰۶</td>
<td>۱/۰۸</td>
<td>۱/۰۵</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۹</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
</tr>
<tr>
<td>۱/۰۳</td>
<td>۱/۰۴</td>
<td>۱/۰۵</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۵</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
</tr>
<tr>
<td>۱/۰۴</td>
<td>۱/۰۵</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۹</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
</tr>
<tr>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
<td>۱/۰۵</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۹</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
</tr>
<tr>
<td>۱/۰۶</td>
<td>۱/۰۴</td>
<td>۱/۰۵</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۹</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
</tr>
<tr>
<td>۱/۰۷</td>
<td>۱/۰۴</td>
<td>۱/۰۵</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۹</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
</tr>
<tr>
<td>۱/۰۸</td>
<td>۱/۰۴</td>
<td>۱/۰۵</td>
<td>۱/۰۶</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۹</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
<td>۱/۰۷</td>
<td>۱/۰۸</td>
</tr>
</tbody>
</table>

۱ Akaikai information criterion (AIC)
۲ Consistent Akaikai information criterion (CAIC)
۳ Cramer-VonMisses (CM)
۴ Watson (W)
۵ Kolmogorov-Smirnov (K-S)
برنامه محاسبه آماره‌ای آزمون تیکویی پرازش در نرم‌افزار R
برای توزیع MOG به صورت زیر است.

\[T_{CM} \]

1. محاسبه آماره

\[\text{ks.test}(x, "FFF", 0.7983691, 1.310359, 58.98452) \]

\[x \sim c(1.27, 1.04, 0.74, 2, 1.81, 1.73, 1.68, \]
\[1.64, 1.61, 1.58, 1.52, 1.49, 1.32, 1.25, 0.93, \]
\[0.55, 1.50, 1.54, 1.42, 1.28, 1.11, 0.77, 2.01, \]
\[1.81, 1.76, 1.68, 1.61, 1.59, 1.53, 1.49, \]
\[1.39, 1.66, 1.61, 1.55, 1.50, 1.48, 1.29, \]
\[1.13, 0.81, 2.24, 1.84, 1.76, 1.69, 1.66, 1.62, \]
\[1.6, 1.89, 1.78, 1.7, 1.67, 1.63, 1.61, 1.55, \]
\[1.51, 1.48, 1.30, 1.24, 0.84, 1.84, 1.77, 1.70) \]
\[y \sim \text{sort}(x) \]
\[n \sim \text{length}(x) \]
\[z \sim \text{seq}(1, n) \]
\[F \sim \text{function}(y, z, a, b, p) \{ \}
\[(1 - \exp((-a/b)*(\exp(b*y[z]) - 1))) \]
\[* (1 + (p - 1) * \exp((-a/b)*(\exp(b*y[z]) - 1))) \]
\[^{-1} \}
\[U \sim \text{function}(y, z, a, b, p) \{ \}
\[w \sim \text{function}(y, z, a, b, p) \{ \}
\[(1/(12*n)) + \text{sum}(F(y, z, a, b, p)) \]
\[- \text{sum}((FF(y, z, a, b, p)/n) - (1/2)) \]
\[(12*n) \}
\[w(y, z, 0.7983691, 1.310359, 58.98452) \]

2. محاسبه آماره

\[T_{K-S} \]

\[\text{ks.test}(x, "FFF", 0.7983691, 1.310359, 58.98452) \]

\[x \sim c(1.27, 1.04, 0.74, 2, 1.81, 1.73, 1.68, \]
\[1.64, 1.61, 1.58, 1.52, 1.49, 1.32, 1.25, 0.93, \]
\[0.55, 1.50, 1.54, 1.42, 1.28, 1.11, 0.77, 2.01, \]
\[1.81, 1.76, 1.68, 1.61, 1.59, 1.53, 1.49, \]
\[1.39, 1.66, 1.61, 1.55, 1.50, 1.48, 1.29, \]
\[1.13, 0.81, 2.24, 1.84, 1.76, 1.69, 1.66, 1.62, \]
\[1.6, 1.89, 1.78, 1.7, 1.67, 1.63, 1.61, 1.55, \]
\[1.51, 1.48, 1.30, 1.24, 0.84, 1.84, 1.77, 1.70) \]
\[y \sim \text{sort}(x) \]
\[n \sim \text{length}(x) \]
\[z \sim \text{seq}(1, n) \]
\[F \sim \text{function}(y, z, a, b, p) \{ \}
\[(1-exp((-a/b)*(exp(b*y[z]) - 1))) \]
\[* (1 + (p - 1) * \exp((-a/b)*(\exp(b*y[z]) - 1))) \]
\[^{-1} \}
\[U \sim \text{function}(y, z, a, b, p) \{ \}
\[w \sim \text{function}(y, z, a, b, p) \{ \}
\[(1/(12*n)) + \text{sum}(F(y, z, a, b, p)) \]
\[- \text{sum}((FF(y, z, a, b, p)/n) - (1/2)) \]
\[(12*n) \}
\[w(y, z, 0.7983691, 1.310359, 58.98452) \]

3. محاسبه آماره

\[T_{K-S} \]

\[\text{ks.test}(x, "FFF", 0.7983691, 1.310359, 58.98452) \]

\[x \sim c(1.27, 1.04, 0.74, 2, 1.81, 1.73, 1.68, \]
\[1.64, 1.61, 1.58, 1.52, 1.49, 1.32, 1.25, 0.93, \]
\[0.55, 1.50, 1.54, 1.42, 1.28, 1.11, 0.77, 2.01, \]
\[1.81, 1.76, 1.68, 1.61, 1.59, 1.53, 1.49, \]
\[1.39, 1.66, 1.61, 1.55, 1.50, 1.48, 1.29, \]
\[1.13, 0.81, 2.24, 1.84, 1.76, 1.69, 1.66, 1.62, \]
\[1.6, 1.89, 1.78, 1.7, 1.67, 1.63, 1.61, 1.55, \]
\[1.51, 1.48, 1.30, 1.24, 0.84, 1.84, 1.77, 1.70) \]
\[y \sim \text{sort}(x) \]
\[n \sim \text{length}(x) \]
\[z \sim \text{seq}(1, n) \]
\[F \sim \text{function}(y, z, a, b, p) \{ \}
\[(1-exp((-a/b)*(exp(b*y[z]) - 1))) \]
\[* (1 + (p - 1) * \exp((-a/b)*(\exp(b*y[z]) - 1))) \]
\[^{-1} \}
\[U \sim \text{function}(y, z, a, b, p) \{ \}
\[w \sim \text{function}(y, z, a, b, p) \{ \}
\[(1/(12*n)) + \text{sum}(F(y, z, a, b, p)) \]
\[- \text{sum}((FF(y, z, a, b, p)/n) - (1/2)) \]
\[(12*n) \}
\[w(y, z, 0.7983691, 1.310359, 58.98452) \]
جدول ۲. برآورد ماکسیمم درست‌نمایی پارامترها و مقادیر معیارهای اطلاع برای داده‌های مقاومت الیاف شیشه

<table>
<thead>
<tr>
<th>توزیع‌ها</th>
<th>CAIC</th>
<th>AIC</th>
<th>ăr</th>
<th>ğ</th>
<th>ă</th>
<th>ă</th>
<th>ă</th>
<th>ă</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOG</td>
<td>32/18</td>
<td>30/064</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>58/1984</td>
<td>1/31003</td>
<td>1/79824</td>
</tr>
<tr>
<td>GG</td>
<td>31/20</td>
<td>30/291</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/3207</td>
<td>2/050010</td>
<td>2/85004</td>
</tr>
<tr>
<td>BG</td>
<td>31/24</td>
<td>30/291</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/3751</td>
<td>2/050010</td>
<td>2/85004</td>
</tr>
<tr>
<td>GP</td>
<td>31/25</td>
<td>30/291</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/3751</td>
<td>2/050010</td>
<td>2/85004</td>
</tr>
<tr>
<td>GL</td>
<td>31/25</td>
<td>30/291</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/3751</td>
<td>2/050010</td>
<td>2/85004</td>
</tr>
</tbody>
</table>

جدول ۳. مقادیر آماره‌های آزمون تیکویی برای برای داده‌های مقاومت الیاف شیشه

<table>
<thead>
<tr>
<th>توزیع‌ها</th>
<th>CAIC</th>
<th>AIC</th>
<th>ăr</th>
<th>ğ</th>
<th>ă</th>
<th>ă</th>
<th>ă</th>
<th>ă</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOG</td>
<td>35/08</td>
<td>30/0006</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>58/1984</td>
<td>1/31003</td>
<td>1/79824</td>
</tr>
<tr>
<td>McG</td>
<td>36/84</td>
<td>30/0006</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/3207</td>
<td>2/050010</td>
<td>2/85004</td>
</tr>
<tr>
<td>GG</td>
<td>37/10</td>
<td>30/0006</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/3207</td>
<td>2/050010</td>
<td>2/85004</td>
</tr>
<tr>
<td>BG</td>
<td>37/10</td>
<td>30/0006</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/3207</td>
<td>2/050010</td>
<td>2/85004</td>
</tr>
<tr>
<td>GP</td>
<td>37/10</td>
<td>30/0006</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/3207</td>
<td>2/050010</td>
<td>2/85004</td>
</tr>
<tr>
<td>GL</td>
<td>37/10</td>
<td>30/0006</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1/3207</td>
<td>2/050010</td>
<td>2/85004</td>
</tr>
</tbody>
</table>

شکل ۲. نمودار برآورد ثابت چگالی احتمال توزیع‌های مورد مقایسه برای داده‌های مقاومت الیاف شیشه‌ها

مراجع

