معرفی و کاربرد صف \(M/M/1 \) همراه با فاصله و تعییر

مجدی آبیار، عباسقلی بانمشری، زاده

تاریخ دریافت: 1394/3/15
تاریخ پذیرش: 1395/1/30

چکیده:
در اینجا یک صفحه \(M/M/1 \) همراه با پاژورود بررسی می‌شود که در صورت خرابی سروس دهنده فاصله رخ می‌دهد و پس از تعییر سروس دهنده، سامانه مجددا شروع به کار می‌کند. با تغییر فاصله سامانه فرو نمی‌پاشد و تا پایان زمان تعییر، متغییر به سامانه مراجعه نمی‌کند. جواب‌های کلی برای تابع احتمال انتقال سامانه ارائه می‌شود و با استفاده از این تحلیل‌های جالب پایان‌گیری انجام می‌شود و برخی اندوزه‌های مؤثر بودن سامانه معرفی می‌گردند. سپس نتایج حاصل برای بررسی و مدل‌سازی عملکرد یک دستگاه خودپرداز بانک مورد استفاده قرار می‌گیرد و به منظور مشاهده و بهبودی عملکرد دستگاه مذکور، ارائه‌های تغییر پارامترها بر اندوزه‌های مؤثر بودن سامانه مورد بررسی قرار می‌گیرند. در نهایت به کمک نرم‌افزار \(R \) عملکرد سامانه شیپسازی می‌شود و نتایج بدست آمده با مقادیر مورد انتظار مقایسه می‌گردد.

واژه‌های کلیدی: تحلیل حالات گذار، تحلیل حالات پایا، پاژورود، اندوزه‌های مؤثر بودن، شیپسازی.

1 مقدمه

تجلیل مدل‌های صفحه، همواره ابزار قدرتمند برای بررسی پیش‌آرایی‌های واقعی در انتخاب محافل قرار می‌دهد. امروزه گسترش کاربرد نظریه صفح در پیوندی از حوادث قابل مشاهده است. در اینجا سعی داریم مدل مناسب را که برای پیش‌بینی رفتار یک دستگاه خودپرداز مورد نیاز است، معرفی کنیم؛ سامانه‌ای با یک سروسیستم، که برای تحلیل آن مؤلفه‌ای بازپرس، فاصله و تعییر مواجه هستیم. شایان ذکر است که به وجود این پارامترها، دانست کاربرد این مدل بررسی گسترده است و عملکرد دستگاه خودپرداز فقط ممکن از کاربرد مدل مذکور است. بعنوان مثال دیگر می‌توانیم به انتقال اطلاعات در قالب یک سیگنال الکترونیکی از طریق یک مسیر مانند کابل یا چرخ نوری اشاره کنیم.

دانشجوی دکتری آموزش، دانشگاه صنعتی شهیدرضا، ایران

* عضو هیئت علمی گروه آمار، دانشگاه علوم طبیعی، ایران

continued fraction

2 توصیف مدل

منابع ردی: مقایسه‌ی مستقل از هم و بر اساس فرایند پوآسون با پارامتر λ سرویس دهنده مراجعه می‌کنند.

سرویس‌ها: زمان‌های سرویس مقایسه‌ی، متغیرهای تصادفی مستقل نمایی با پارامتر μ هستند و سرویس‌های FCFS بر اساس ترتیب ورود است.

پوآسون: بعد از تکمیل هر سرویس، مقایسه‌ی با احتمال q مجدداً به انتهای صف ملحق می‌شود یا با احتمال p سامانه را ترک می‌کند.

فاجعه‌ها: فاجعه‌ها برای سرویس دهنده به صورت فراپایه‌ای پوآسون مستقل با پارامتر ν اتفاق می‌افتد و سرویس دهنده به‌محض وقوع فاجعه غیرفعال می‌شود.

تعداد نمونه‌های سرویس‌های متغیرهای تصادفی مستقل نمایی با پارامتر η هستند.

بر اساس تعاریف فوق، شکل 1 گردش حالت‌ها در سامانه را نشان می‌دهد.

شکل 1. نمودار گردش حالت‌های سامانه

سامانه صف مورد نظر را به‌عنوان یک مدل زنجیر مارکف $\{X(t): t \in [0, \infty)\}$ بررسی می‌کنیم. CTMC زمان‌پیوسته (CTMC) برای تعداد مقایسه‌ی در سامانه در زمان t قرار می‌دهم.

حالی که $P_n(t) = P(X(t) = n), \quad n = 0, 1, 2, \ldots$"}

۲ توصیف مدل

مشابه صف نیازمندی برای مدل‌های است. اکثری یا استفاده در ادامه به اختصار آمده است.

ورود: مقایسه‌ی مستقل از هم و بر اساس فرایند پوآسون با پارامتر λ سرویس دهنده مراجعه می‌کنند.

سرویس‌ها: زمان‌های سرویس مقایسه‌ی، متغیرهای تصادفی مستقل نمایی با پارامتر μ هستند و سرویس‌های FCFS بر اساس ترتیب ورود است.

پوآسون: بعد از تکمیل هر سرویس، مقایسه‌ی با احتمال q مجدداً به انتهای صف ملحق می‌شود یا با احتمال p سامانه را ترک می‌کند.

فاجعه‌ها: فاجعه‌ها برای سرویس دهنده به صورت فراپایه‌ای پوآسون مستقل با پارامتر ν اتفاق می‌افتد و سرویس دهنده به‌محض وقوع فاجعه غیرفعال می‌شود.

تعداد نمونه‌های سرویس‌های متغیرهای تصادفی مستقل نمایی با پارامتر η هستند.

بر اساس تعاریف فوق، شکل 1 گردش حالت‌ها در سامانه را نشان می‌دهد.

شکل 1. نمودار گردش حالت‌های سامانه

سامانه صف مورد نظر را به‌عنوان یک مدل زنجیر مارکف $\{X(t): t \in [0, \infty)\}$ بررسی می‌کنیم. CTMC زمان‌پیوسته (CTMC) برای تعداد مقایسه‌ی در سامانه در زمان t قرار می‌دهم.

حالی که $P_n(t) = P(X(t) = n), \quad n = 0, 1, 2, \ldots$
هدف اصلی این مقاله استفاده از معادله (9) بر حسب $Q(t)$ و $P_0(t)$ به دست آوردن با استفاده از معادله (9)

$$\frac{P_n^*(z)}{P_{n-1}^*(z)} = \frac{\lambda}{(z + \lambda + q \mu + \nu)} - \frac{q \mu P_{n+1}^*(z)}{P_n^*(z)}$$

$$= \frac{\lambda q \mu}{(z + \lambda + q \mu + \nu)} - \phi(z)$$

$$= \frac{\lambda q \mu}{\eta^2 (\lambda + \mu) + \eta \nu \mu}, \quad n = 1, 2, 3, \ldots$$

در نتیجه خواص داشت:

$$P_n(t) = \int_0^t P_n(u) \left(\frac{\lambda}{q \mu} \right) e^{-\lambda u} \eta \nu \mu (t-u) du.$$

(15)

بنا بر این معادلات (13) و (15) و (5) بهطور کامل همه احتمالات حالت گذرا و $P_n(t)$ و $P(t)$ با استفاده از $Q(t)$ و $P_0(t)$ در طول زمان t و وقتی $t \rightarrow \infty$, به صورت زیر است:\n
$$m(t) = \frac{\eta (\lambda - q \mu)}{\nu (\lambda + \nu)} + \frac{\eta \nu \mu}{(\eta + \nu) (\lambda + \nu) - (w_1 - \sqrt{w_1^2 - 4 \lambda q \mu})}.$$ اثبات: به [1] مراجعه کنید.

حالت پایا و اندامزهای مؤثر بودن

در این بخش، توزیع حالت پایا طول صفح و احتمال حالت پایای شکست، در مدل صفح بنده مورد بررسی محاسبه می‌شود و گشتاور احتمالهای اندامزه‌ای در حالت پایا به دست می‌آید.

قضیه 1.4. بهایی $\theta > \nu > 0$ و $\eta > \nu > 0$ و $\eta > 0$ توزیع‌های حالت پایا در مدل $M/M/1$ باز گسترش همراه با فاصله خرابی و تعمیر سرویس‌دهنده به صورت زیر است:

$$Q = \frac{\nu}{\eta + \nu}, \quad \pi_* = (1 - Q)(1 - \rho), \quad \pi_n = (1 - Q)\rho^n(1 - \rho), \quad n = 1, 2, \ldots$$

(16)

(17)

(18)

به طوری که $\eta > \nu > 0$، $\theta > \nu > 0$ و $\eta > 0$، قابل قبول می‌باشد با استفاده از فرمول (10) و اجرای فرآیند تکراری در (9) $P^*(z)$ به صورت کسر مسلسل به دست آمده $P^*(z)$ نوشته:\n
$$P^*(z) = \frac{1}{(z + \lambda + \nu)} + \frac{\eta \nu}{\lambda q \mu} (\frac{\lambda q \mu}{z + \lambda + \nu}) - \phi(z).$$

(11)

که در آن

$$\phi(z) = \frac{\lambda q \mu}{(z + \lambda + q \mu + \nu)} - \phi(z).$$

برای به دست آوردن $P^*(z)$، کسر مسلسل را به صورت یک معادله درجه دو بدانی کنیم:

$$\phi(z) = \frac{\lambda q \mu}{(z + \lambda + q \mu + \nu)} - \phi(z).$$

(12)

(13)

$$P_n(t) = \sum_{n=0}^{\infty} \frac{(\eta + \nu)(q \mu)^n}{(\lambda q \mu)^n} e^{-(\lambda + q \mu + \nu)t} I_{n+1}(\sqrt{\lambda q \mu}) t^n\eta \nu (u - v)$$

(14)

(15)

در ادامه بقیه احتمالات حالت گذری $P_n(t)$ و $P^*(z)$ به طوری که $\eta > \nu > 0$, $\theta > \nu > 0$ و $\eta > 0$، قابل قبول می‌باشد با استفاده از فرمول (10) و اجرای فرآیند تکراری در (9) $P^*(z)$ به صورت کسر مسلسل به دست آمده $P^*(z)$ نوشته:\n
$$P^*(z) = \frac{1}{(z + \lambda + \nu)} + \frac{\eta \nu}{\lambda q \mu} (\frac{\lambda q \mu}{z + \lambda + \nu}) - \phi(z).$$

(11)

که در آن

$$\phi(z) = \frac{\lambda q \mu}{(z + \lambda + q \mu + \nu)} - \phi(z).$$

برای به دست آوردن $P^*(z)$، کسر مسلسل را به صورت یک معادله درجه دو بدانی کنیم:

$$\phi(z) = \frac{\lambda q \mu}{(z + \lambda + q \mu + \nu)} - \phi(z).$$

(12)

(13)

$$P_n(t) = \sum_{n=0}^{\infty} \frac{(\eta + \nu)(q \mu)^n}{(\lambda q \mu)^n} e^{-(\lambda + q \mu + \nu)t} I_{n+1}(\sqrt{\lambda q \mu}) t^n\eta \nu (u - v)$$

(14)
میانگین و واریانس اندام‌های سامانه با نامهای (V(N) و E(N) اندازه‌سازی سامانه (E(N0) به صورت زیر به دست می‌آید:

\[E(N) = \rho \frac{(1 - Q)}{1 - \rho} \]

\[V(N) = \rho \frac{(1 - Q)(1 + \rho Q)}{(1 - \rho)} \]

\[E(N_0) = \frac{(1 - Q)\rho^*}{1 - \rho} \]

اثبات. در ابتدا احتمال حالت شکست Q به صورت زیر به دست می‌آید:

\[Q = \lim_{t \to \infty} Q(t) = \lim_{z \to \infty} zQ^*(z) = \frac{\nu}{\eta + \nu} \]

\[\pi = \lim_{t \to \infty} P_1(t) = \lim_{z \to \infty} zP_1^*(z) \]

\[= \frac{\eta}{\eta + \nu} \left(\frac{\nu}{w - \lambda + \nu + \sqrt{\lambda + q\nu + \nu^2 - 4\lambda\nu}} \right) \]

\[w = \lambda + \nu + q\nu \]

با جابجایی مقادیر \(\pi \) و \(\pi_n \) از معادلات (17) و (18) و بعد از ساده کردن داریم:

\[\Pi(s) = Q + (1 - Q)(1 - \rho) + \sum_{n=1}^{\infty} (1 - Q)\rho^n(1 - \rho)s^n \]

\[= Q + (1 - Q)(1 - \rho)\left[1 + \sum_{n=1}^{\infty} \rho^n s^n\right] \]

\[= Q \rho(1 - s) + (1 - \rho) \frac{1}{(1 - ps)} \]

\[\sum_{n=1}^{\infty} \pi_n s^n = \lim_{t \to \infty} P_n(t) = \lim_{z \to \infty} zP_n^*(z) \]

مشاهده می‌شود که احتمالات حالات پایا و یا وجود دارنده آگر و تناها

\[\rho = \frac{\lambda + \nu + q\nu}{\nu} \]

\[= \frac{\lambda + \nu - \sqrt{\lambda + q\nu + \nu^2 - 4\lambda\nu}}{\nu} \]

\[\eta < \frac{\lambda + \nu}{q \nu} \]

\[\nu > \frac{1}{\nu} \]

\[\eta > \frac{1}{\nu} \]

\[\frac{Q}{\nu} \]

\[\pi_1 = 1 - Q \]

\[\pi_1 = \frac{Q}{\nu} \]

\[\eta > \frac{1}{\nu} \]

\[\frac{Q}{\nu} \]

\[\pi_1 = 1 - Q \]

\[\pi_1 = \frac{Q}{\nu} \]

\[\eta > \frac{1}{\nu} \]

\[\frac{Q}{\nu} \]
قابلیت اعتماد

قابلیت اعتماد در سامانه‌های مورد بحث، مستقیماً با نوع فاصله ارتباطی دارد؛ یعنی شکست در سامانه، در صورت خرابی سرویس‌دهنده رخ می‌دهد. اما عدم دسترسی به این سامانه هنگامی است که امکان ورود به سامانه خالص وجود دارد، یعنی وقتی که سرویس‌دهنده در حال تعییر است. امکان ورود به سامانه وجود دارد. با بررسی این امر، قابلیت اعتماد سامانه‌های مورد بررسی مورد بررسی قرار گرفته است از احتمالی که سامانه کارکرد را به‌طور مؤثر در یک دوره زمانی مشخص و شرایط محیطی مربوط ادامه دهد. در دسترس‌بودن (قابلیت دسترسی) عبارت است از احتمال این که سامانه در یک زمان خاصی یا نسبی از بازه کارایی جایگاه باشد.

یک زمان تعییر در دسترس‌بودن سامانه در زمان t عبارت است از $A(t)$ که به‌صورت زیر به دست می‌آید:

$$A(t) = 1 - Q(t) = \frac{\eta}{\eta + \nu} + \frac{\nu}{\eta + \nu} e^{-(\eta + \nu)t}.$$ \hspace{1cm} (23)

قابلیت اعتماد در دسترس‌بودن سامانه در تایم t به‌صورت زیر است:

$$\hat{A}(t) = \frac{1}{t} \int_{0}^{t} A(u)du = \frac{\eta}{\eta + \nu} + \frac{\nu}{(\eta + \nu)^{2}} \frac{1}{t}(1 - e^{-(\eta + \nu)t}).$$ \hspace{1cm} (24)

میانگین در دسترس‌بودن سامانه در $[0, t]$ به‌صورت زیر است:

$$\hat{Q}(t) = 1 - e^{-\nu t}.$$ \hspace{1cm} (25)

این متغیر η نشان‌دهنده زمان میانگین از رابطه (5) به دست خواهیم آورد:

$$Q(t) = 1 - e^{-\nu t}.$$ \hspace{1cm} (26)

از آنچه که در اینجا نشان داده شده‌است، $V(N) = E(N^2) - E(N)^2$ و پس از مقادیر ساده کردن به دست خواهیم آورد:

$$V(N) = \frac{\rho^2 (1 - Q)}{(1 - \rho)^2} + \frac{\rho (1 - Q)}{1 - \rho} \frac{\rho^2 (1 - Q)}{(1 - \rho)^2} = \frac{\rho (1 - Q)}{(1 - \rho)} \frac{\rho^2 (1 - Q)}{(1 - \rho)^2}.$$ \hspace{1cm} (27)

نماد $E(N_q)$ را به عنوان میانگین انتظار در حالت q در نظر می‌گیریم، از این رو:

$$E(N_q) = \sum_{n=1}^{\infty} (n - 1)\pi_n.$$ \hspace{1cm} (28)

با جایگذاری مقادیر ... π_n, $n = 1, 2, 3, ...$ پس از برخی محاسبات، جبری، عبارت زیر را به دست می‌آوریم:

$$E(N_q) = \sum_{n=1}^{\infty} (n - 1)(1 - Q)\rho^n(1 - \rho) = (1 - Q)\rho(1 - \rho) \sum_{n=1}^{\infty} (n - 1)\pi_n = (1 - Q)(1 - \rho) \sum_{n=1}^{\infty} \pi_n = (1 - Q)(1 - \rho) \sum_{n=1}^{\infty} \frac{n - 1}{\rho} = (1 - Q)\rho.$$ \hspace{1cm} (29)

توجه: میانگین تعداد تفاعلان در سامانه، $E(N)$، با احتمال زمان تعییر و زمان پیکاری که متغیر در سامانه حضور ندارد محاسبه شده است.

$$P = \sum_{n=1}^{\infty} \pi_n = (1 - Q)(1 - \rho) \sum_{n=1}^{\infty} \frac{n - 1}{\rho} = (1 - Q)(1 - \rho) \sum_{n=1}^{\infty} \frac{\rho^{n-1}}{(1 - \rho)^{n-1}} = \frac{(1 - Q)\rho}{1 - \rho}.$$ \hspace{1cm} (30)

$$P = (\text{اینگال سرویس‌دهنده}) = \pi + Q = (1 - Q)(1 - \rho) \rho = (1 - Q)^2.$$

$$P = \frac{(1 - Q)\rho}{1 - Q} = \rho.$$ \hspace{1cm} (31)
6 کاربرد و شبیه‌سازی

1.5 کاربرد

برای بررسی رفتار دستگاه خودپردازه‌بانک ملی واقع در فرودگاه مهرآباد در ساختار اداری، از مدل‌های محاسباتی فضای سیری استفاده کردیم. سپس به منظور دستگاه‌های روزی مورد نظر در روزهای مشابه سه‌گانه - یک از آن‌ها - مؤثر و موفق در دریافت سرویس - را در هر ساعت ثبت کردیم. این اطلاعات در جدول 1 آمده است. با تحلیل واریانس مشاهده کردیم که عامل تغییر روزی و مدت نوشتاری بر پاسخ ندارد. میانگین تعداد مراجعه‌گران در نمونه مکور برای کا 6/7 بوده که آن را به عنوان براوردی از میانگین جامعه درنظر گرفتیم. سپس به کمک آزمون نیکویی برزش مشخص گردید که می‌تواند داده‌ها را متغیرهای تصادفی از توزیع یوآسون با میانگین 10 در نظر بگیریم. سپس با تحلیل باقی‌مانده‌ها، بستگی آزمون نرمال بودن آنها و ثابت بودن واریانس‌ها، با اطمینان بیشتری به این تهیه رضایت‌داری که مراجعه به دستگاه مقدور، از توزیع یوآسون با میانگین 10 نفر در ساعت پیوسته می‌کند. حال اگر زمان شروع کار مراجعه‌کننده تا پایان کارگر، با اطلاعات ثبت‌شده در دستگاه، دریافتی که این زمان را توزیع نمی‌نماید باید پایان بماند.

از رابطه (33) در دسترس بودن سامانه‌ای در اجرای طولانی‌مدت، یا حالت پایای به‌صورت زیر حاصل می‌شود:

\[A = \lim_{t \to \infty} A(t) = \frac{\eta}{\eta + \nu} \]

همچنین از رابطه (34) داریم:

\[\lim_{t \to \infty} A(t) = \frac{\eta}{\eta + \nu} \]

از این رو:

\[A = \frac{\eta}{\eta + \nu} = \frac{1}{\nu} \frac{\nu + \eta}{\nu} = \frac{MTTF}{MTTF + MTTR} \]

\[A = \lim_{t \to \infty} A(t) \]

معقول بود. همچنین توزیع زمان‌های غیرفعال بودن سامانه، یعنی در اجرای طولانی‌مدت، در دسترس بودن لحظه‌ای با میانگین در دسترس بودن برای است.
درس‌های سطح $E(N)$ بر اثر شکل

$L_1: \lambda = 0.01; \mu = 1.0; q = 49.0; \eta = 4$

$L_2: \lambda = 0.01; \mu = 5.0; q = 49.0; \eta = 4$

$L_3: \lambda = 0.01; \mu = 2.0; q = 49.0; \eta = 4$

تمامی به نمایی با میانگین 15 دقیقه به دست آمده.

حال که نمایه کار دستگاه را بر طبق سامانه مورد بررسی مدل‌بندی کردیم و پارامترهای مورد نظر را نیز برآورد نمودیم، می‌توانیم به تحلیل کار دستگاه و شبیه‌سازی آن پیروی کنیم و نیز تغییرات عملکرد را بر اساس تغییر پارامترها مشاهده کنیم و بر طبق آن، تنظیم‌های لازم را انجام دهیم.

مشخص است که تغییرات و همچنین بازخوردهای قابل تغییر نیستن. بنابراین بتوان به این نتایج حوصل از تغییر در سایر پارامترها مطلع شویم: بررسی رفتار در پارامتر تغییر پارامترها، امکان قضاوت صحیح در باره سامانه را به ما نمی‌دهد. زیرا تغییرات و همکاراناداری‌های مجدد باشد که به سمت و هم ممکن است حوصل سرعت مناسب سروس باشد، که خوب است. علاوه بر اثر تغییر نرخ سروس را بر میانگین تعداد در سامانه در هر سطح ثابت از سایر پارامترها بررسی کنیم، می‌توانیم به دستاوردی موجه اهمیت این پارامتر شویم.

شکل‌های ۱ و ۲ ۳ نشان می‌دهند که با افزایش نرخ سروس در سامانه، میانگین تعداد مقاضا از سامانه، $E(N)$، در سطوح مختلف نرخ خرابی η و نیز در سطوح مختلف زمان تعیین، کاهش پیدا می‌کند. به‌عبارتی در هر کدام از حالات با افزایش نرخ سروس، ا надاره سامانه کوچکتر می‌شود و این موضوع می‌تواند موجب رضایتمندی و ترغیب مقاذا از گرد. اما موضوع مهمتر، تأثیر نرخ سروس، نرخ فاقده و نرخ تعیین بر عملکرد سامانه است. از فرمول کاملاً مشخص است که تأثیر μ بر عملکرد سامانه کاملاً خطی و به صورت ضرب ثابت است.

شکل‌های ۴ و ۵ جزئیات از عملکرد سامانه را به‌عنوان عملکرد در برابر پارامترهای U و η در سطوح مختلف μ نشان می‌دهند. به‌عنوان مشخص است عملکرد U یک تابع افوازیش از μ و η یک تابع کاهشی از η و η است.

حال باید بپیشیند که هزینه‌ای صرف شده برای کاهش نرخ خرابی و زمان تعیین با افزایش نرخ سروس، در برابر افزایش عملکرد توجه باید به اینجا و سپس تصمیم گیری کنیم.
سامانه و نیز طول زمان و قرار رخداده‌ها در این شکل مشخص است. البته کاملاً واضح است که حس زمان اجرا سامانه کوتاه بوده.

نیاز این مقدار را با ایمید در حال حاضر با مقایسه کرده.

حال اگر زمان را افزایش دهیم، انتظار داریم میانگین تعداد در سامانه به مقدار مورد انتظار در حالت پایا تنکیک شود. برای این منظور، شبیه‌سازی سامانه را در 1000 واحد زمان انجام می‌دهیم و همانطور که در شکل 7 مشخص است این عدد 6736.0 است که به مقدار مورد نظر تنکیک شده است.

حال انتظار داریم اگر باهر و درباره این شبیه‌سازی را تکرار کنیم مقدار به‌دست آمده برای میانگین طول صف بر اساس قضیه‌بندی مرکزی دارای توزیع نرمال با میانگین 6195.2 باشد.

این نتایج برای 30 بار تکرار شبیه‌سازی به شرح زیر می‌باشند:

<table>
<thead>
<tr>
<th>عبارت</th>
<th>مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(N)</td>
<td>609475</td>
</tr>
<tr>
<td>E(N)</td>
<td>609743</td>
</tr>
<tr>
<td>E(N)</td>
<td>609507</td>
</tr>
<tr>
<td>E(N)</td>
<td>609703</td>
</tr>
<tr>
<td>E(N)</td>
<td>609712</td>
</tr>
<tr>
<td>E(N)</td>
<td>609518</td>
</tr>
<tr>
<td>E(N)</td>
<td>609520</td>
</tr>
<tr>
<td>E(N)</td>
<td>609526</td>
</tr>
<tr>
<td>E(N)</td>
<td>609526</td>
</tr>
<tr>
<td>E(N)</td>
<td>609526</td>
</tr>
</tbody>
</table>

شبیه‌سازی سامانه صفحه‌ای معنی است که با توجه به تحقیقات ویژه، تعمیر و بازخورده، نحوه شکل و رفتارهای جدی بررسی انجام پذیرد. در صفحه ری---

شکل 5. اثر ρ بر U در سه مقطع μ

L1: λ = 10; μ = 25; q = 0; δ = 0; η = 4; k = 1
L2: λ = 10; μ = 25; q = 0; δ = 0; η = 5; k = 1
L3: λ = 10; μ = 50; q = 0; δ = 0; η = 4; k = 1

شکل 6. شبیه‌سازی تعداد مراجعه کننده‌ها به سامانه در کوتاه مدت

\[\lambda = 10; \mu = 25; q = 0; \delta = 0; \eta = 4; k = 1 \]
شکل 7. شیب‌سازی تعداد مراجعه کننده‌ها به سامانه در بلندمدت

\[\lambda = 10; \mu = 25; \eta = 0.96; \upsilon = 0.5; \gamma = 4; t = 1000 \]

جدول 1. فراوانی تعداد مراجعه به دستگاه خودپرداز

<table>
<thead>
<tr>
<th>روز/ساعت</th>
<th>0-8</th>
<th>9-10</th>
<th>11-12</th>
<th>13-14</th>
<th>15-16</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز اول</td>
<td>7</td>
<td>11</td>
<td>6</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>روز دوم</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>روز سوم</td>
<td>9</td>
<td>17</td>
<td>10</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>روز چهارم</td>
<td>17</td>
<td>10</td>
<td>8</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>روز پنجم</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>روز ششم</td>
<td>8</td>
<td>7</td>
<td>13</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>روز هفتم</td>
<td>11</td>
<td>18</td>
<td>13</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>روز هشتم</td>
<td>16</td>
<td>9</td>
<td>11</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>روز هفتم</td>
<td>5</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>روز ششم</td>
<td>19</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>روز هفتم</td>
<td>8</td>
<td>13</td>
<td>16</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>روز هفتم</td>
<td>9</td>
<td>5</td>
<td>15</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>روز هفتم</td>
<td>5</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>روز هفتم</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>روز هفتم</td>
<td>6</td>
<td>7</td>
<td>12</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

جدول 2. نتایج آماری حاصل از شیب‌سازی تعداد مراجعه کننده‌ان به دستگاه خودپرداز

<table>
<thead>
<tr>
<th>آماره</th>
<th>تغییرات استاندارد</th>
</tr>
</thead>
<tbody>
<tr>
<td>میانگین</td>
<td>باره اطمنان 95 درصدی میانگین</td>
</tr>
<tr>
<td>حد بالای بیرا</td>
<td>میانگین بیرا 5 درصدی</td>
</tr>
<tr>
<td>حد پایین</td>
<td>میانگین</td>
</tr>
<tr>
<td>واریانس</td>
<td>انحراف معیار</td>
</tr>
<tr>
<td>میانه</td>
<td>مکانیم</td>
</tr>
<tr>
<td>دامنه</td>
<td>دامنه میان چارکی</td>
</tr>
<tr>
<td>چاپگی</td>
<td>دامنه</td>
</tr>
<tr>
<td>کشیدگی</td>
<td>دامنه</td>
</tr>
</tbody>
</table>
مراجع

[1] آبیار، مجید (1393). تحلیل حالت گذرا و قابلیت اعتماد در صف M/M/1 بازگشتی همراه با فاجعه و تعمیر، پایان‌نامه کارشناسی ارشد رشته آمار اقتصادی-اجتماعی، دانشکده علوم ریاضی و رایانه، دانشگاه علوم طبیعی-پزشکی، تهران.

