طرح تفکیک منجر به نمونه‌گیری تصادفی ساده

سمیا جلالی‌ی، عبدالحمید رضایی، رکن آبادی، غلامرضا محتنمی بزادران

چکیده:
اجرای نمونه‌گیری با احتمالات متغیر به شیوه بدون جایگذاری، علیرغم اهمیت آن بسیار پیچیده است و روشنگری معناداری برای اجرای آن پیشنهاد شده است. از اجزا: طرح میدزونو و طرح سیستماتیک. یکی از روشنگری که در سالهای اخیر به توسط دو، و تایل (1998) معرفی شده است. روش تفکیکی منجر به نمونه‌گیری تصادفی ساده است که در این مقاله ضمن تشریح کامل این طرح با بیان مثالی نحوه محاسبه احتمال هر یک از نمونه‌های ممکن را، بیان نموده و با استفاده از نرم‌افزار برنامه اجرا آن را ارائه نموده ام. شیان ذکر است این طرح را می‌توان با استفاده از برنامه مربوط به جوامع مختلف پس از تعیین احتمالات شمول دلخواه نمود.

واژه‌های کلیدی: تفکیک کردن، بردار احتمال شمول، خروجی، درخت تفکیک، تابع احتمال.

samirajalayeri@yahoo.com
rezaei@um.ac.ir
gmb1334@yahoo.com

*Devill and Tille
در این مورد اطلاعات بیشتری از آنها نمودن ممکن است

۱ مقدمه

۱-Hajek
۲-Tille
۳-Pea
۴-Matei and Tille

۴-Hansen and Hurwitz
۵-Probability Proportional to Size
۶-Horwitz and Thompson
طرح تفکیک منجر به نمونه‌گیری گیری تصادفی ساده

طرح تفکیک منجر به نمونه‌گیری گیری تصادفی ساده (SSRS) است. در این طرح بردار احتمال شمول یعنی برداری N که احتمال عضوی یک کابک نام یک یا مشخص می‌کند، به وسیله تفکیک کلی دو روش تفکیک می‌شود که در آنها احتمالات شمول برای اجزاء برای هستند. در روی اول به طور تصادفی انتخاب می‌شود، اگر برداری X در آن احتمالات شمول برای هستند انتخاب شود، آنگاه یک نمونه تصادفی ساده داریم و اگر بردار دیگر انتخاب شود، آنگاه یک تفکیک جدید نمی‌باشد.

$Pr(D) = Pr(d) = pr(D_1 = d_1) \times \prod_{i=2}^k Pr(D_i = d_i \mid D_1 = d_1, ..., D_{i-1} = d_{i-1})$

اگر گروهی ورد کننده به ناشناخته نتیجه می‌شود، احتمال بحث دارد، $X \in Q$ و در نتیجه X را می‌توان به صورت

$P(X) = \sum_{d : d \Rightarrow X} Pr(d), X \in Q$

توسط که در آن جمع روی همه ی مسیرهای d که نمونه‌ی X را به دست می‌آورد، نتیجه می‌گیرد.

است. اگر گروهی، یک شروع مجدد و در دیگرگون

باینای ورد آن که نتیجه نمونه‌های معنی‌دار

پذیرش هستند، نمونه حاصل را در کنده، یعنی مسیر

منجر به یک نمونه X نشود، یک عامل

ثابت مانند C برای تغییر مقدار در اندماز احتمال

مورد

$P(X) = C \sum_{d : d \Rightarrow X} Pr(d)$

نیاز است، که مقدار C از تساوی

$\sum_{X \in Q} P(X) = 1$

16Grafstrom
17Splitting into Simple Random Sampling (SSRS)
اندیشه آماری سال هفدهم، شماره اول، ص ۴۴-۵۴

سیمیا جهانری، ۰۰۰۰

اجامی می‌دهیم. این عمل را آنقدر ادامه می‌دهیم تا

نمونه حاصل یک نمونه تصادفی ساده باشد.

فرض کنید:

این روش را می‌توان به شرح زیر توصیف کرد:

فرض کنید (ک) = ۱ بردار شمول

اویه باشد. در تفکیک اول دو بردار جدید ممکن

حال اگر حداکثر تعداد تفکیک‌هایی که انجام شده

است کمتر از N باشد، تابع احتمال طراح

به آسانی محاسبه خواهد شد. در این صورت تابع

احتمال را می‌توان به صورت زیر نوشت:

\[P(X) = \sum_{i=1}^{k} Pr(X | E_i) Pr(E_i) \]

و

\[\pi^a = \left(\frac{n_1}{N}, \frac{n_2}{N}, \ldots, \frac{n_k}{N} \right) \]

\[\pi^b = \left(\frac{n_1}{N}, \frac{n_2}{N}, \ldots, \frac{n_k}{N} \right) = \frac{\pi - \alpha \pi^a}{1 - \alpha} \]

حال اگر N و n را به ترتیب حجم جامعه و نمونه

در تفکیک (مرحله i-ام باشد، به‌عنوان

که در آن

N_i = \frac{N}{n} \text{ در تفکیک i-ام}

هست نمودهای غیر صفر و یک بردار

\[\pi^b = \left(\frac{n_1}{N}, \frac{n_2}{N}, \ldots, \frac{n_k}{N} \right) = \frac{N - n}{N} \min(1 - \pi_i) \]

\[\alpha = \min \left[\frac{N}{n} \min(\pi_i) \right], \]

\[n_i = \frac{N}{n} \min(1 - \pi_i) \]

\[Pr(X | E_i) = \begin{cases} \frac{1}{(n_{i-1})}, & \text{اگر } E_i \text{ درخروجی } X \text{ فرآیند } \frac{n_1}{N} \frac{n_2}{N} \ldots \frac{n_k}{N} \text{ از } X \text{ فرآیند} \\ 0, & \text{اگر } E_i \text{ درخروجی } X \text{ فرآیند} \end{cases} \]

برای هر i (i = 1, \ldots, k - 1) داریم:

\[P(X | E_i) \]

می‌کنیم. اگر n-an استخوان (\alpha - 1) انتخاب

\[\pi^a \]

ساده است و نمونه گیری پیاپان می‌پذیرد. در غیر

این صورت، مولفه‌هایی از \[\pi^b \]

را که دارای مقدار

صرف‌بایی یک باشد حذف نموده و تعداد مولفه‌های

باقی مانده، جدید را مشخص می‌کنیم و جوی همواره

که در آن n_i و N_i را به ترتیب حجم جامعه و نمونه

در بردار شمول اوله است. همچنین برای

\[\frac{n_1}{N}, \frac{n_2}{N}, \ldots, \frac{n_k}{N} \]

باید n_i انتخاب کنیم. برای این n_i نیز بهینگی می

گردد. حالا با استفاده از N_i جدید n_i و N_i جدید

را تشکیل داده و روش را تا حصول تصمیم

مبنای پایایی ت Любیش انتخاب همه ی واحدها
طرح تلفیکی منجر به تنویع گیری

از رابطه (2.4) به شرح زیر محاسبه نمود:

\[Q = \text{تعداد اعضای } \{ \text{تُن} \} \]

\[Q = \mathcal{S} \]

\[\begin{align*}
Q &= \left\{ U_0, U_5, U_7, U_8 \right\} \\
&= \left\{ (0,0,0,0,1,0,1,1) \right\}
\end{align*} \]

با عنوان مثلثی که این تنویع‌های ممکن عبارت است از:

\[P(X_{3578}) = \sum_{i=1}^{8} Pr(X_{3578} | E_{i}). Pr(E_{i}) = \frac{1}{3} + \frac{1}{2} + 0 + 0 + 0 = \frac{5}{6} \]

\[\begin{align*}
\sum_{i=1}^{8} \pi_i &= n = \text{بردار است.} \\
\pi &= \left(\begin{array}{c}
\frac{1}{4} \\
\frac{1}{3} \\
\frac{1}{5} \\
\frac{2}{3} \\
\frac{3}{4} \\
\end{array}\right)
\end{align*} \]

\[\begin{align*}
\text{و بردار احتمالات } n = 4, N = 8 \\
\frac{1}{4} + \frac{1}{3} + \frac{1}{5} + \frac{2}{3} + \frac{3}{4} = \frac{37}{60} \\
\text{بردار رسمی نمود:} \\
\text{درخت تلفیکی را در مثال (1) به صورت زیر رسم می‌توان درک کرد:}
\end{align*} \]

\[\begin{align*}
\text{و بردار (1) مقادیر } n_i, N_i \text{ و محاسبات مربوط به مؤلفه‌های بردار } \pi^b \text{ را در مراحل مختلف این مثلث براساس الگوریتم فوق نشان می‌دهد ممکن که در جدول (2) خروجی‌های ممکن و سیر منجر به آنها را همراه با مؤلفه‌های بردارها } \pi^a \text{ و } \pi^b \text{ در مراحل مختلف ملاحظه می‌نماییم. حال می‌توان احتمال انتخاب یک نمونه را در مثال (1) با استفاده}
\end{align*} \]
شکل 2: درخت تفکیک برای مثال فوق

برنامه انجام محاسبات فوق با استفاده از نرم افزار R که برای داده‌های مثال (1) اجرا شده است، به گونه‌ای اجرای شده است، به شرح زیر است که خروجی آن به تفکیک بردارهای \mathbb{a} و \mathbb{b} در مراحل مختلف محاسبات با مراحل مختلف محاسبات بالا منطبق است. که جدول بالایی و پایینی برای هر روز افزایش در مورد مقدار مؤلفه‌های بردارهای \mathbb{a} و \mathbb{b} تی و مراحل مختلف روش تفکیکی منجر به نمونه‌گیری تصادفی ساده است.

```r
f=function(M,m,x) {
    p=matrix(c(x,rep(0,m*M)),m+1,M,byrow = 1)
    pa=matrix(c(rep(m/M,M),rep(0,(m-1)*M)),m,M,byrow = 1)
    for(i in 1:(m-1)) {
        alpha=min(M/m*min(x),M/(M-m)*min(1-x))
        p[(i+1),]=round((p[i,]-alpha*pa[i,])/(1-alpha), digits = 10)
        k=0
        for(j in 1:M)
            if(p[(i+1),j]==0|p[(i+1),j]==1) {k=k+1; pa[(i+1),j]=p[(i+1),j]}
        N=M-k
        x=c(rep(0,N))
        n=0;k=1
        for(j in 1:M)
```

Downloaded from andishyeamari.irstat.ir at 0:41 +0430 on Thursday August 1st 2019
if(p[(i+1),j]!=0&p[(i+1),j]!=1)
 {n=n+p[(i+1),j]; x[k]=p[(i+1),j]; k=k+1}
for(j in 1:M)
 if(p[(i+1),j]!=0&p[(i+1),j]!=1) pa[(i+1),j]=n/N

alpha=min(N/n*min(x),N/(N-n)*min(1-x))
p[(m+1),]=round((p[m,]-alpha*pa[m,])/(1-alpha), digits = 10)
print(p)
print(pa)

x=c(1/4,1/3,3/8,3/7,4/7,5/8,2/3,3/4)
f(8,4,x)

<table>
<thead>
<tr>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
</tr>
<tr>
<td>[2,]</td>
</tr>
<tr>
<td>[3,]</td>
</tr>
<tr>
<td>[4,]</td>
</tr>
<tr>
<td>[5,]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pa</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
</tr>
<tr>
<td>[2,]</td>
</tr>
<tr>
<td>[3,]</td>
</tr>
<tr>
<td>[4,]</td>
</tr>
</tbody>
</table>
نتیجه گیری

طرح تفکیک در نمونه گیری نتایجی ساده یکی از طرح‌های نمونه‌گیری با احتمالات متغیر است. با توجه به اینکه هر طرح نمونه‌گیری، متناظر با یک توزیع گسسته روی مجموعه ای از نمونه‌های ممکن است، هدف کلی یافتن این توزیع می‌باشد. برای این منظور این طرح را با انجام محاسبات عددی و نرم افزاری، ارائه نموده و با ساختن درخت تفکیک، چگونگی محاسبه‌ی تابع احتمال نمونه‌ی مفروض را شرح داده ایم. با استفاده از برنامه ارائه شده می‌توان این طرح را در جوامع مختلف پس از تعیین احتمالات شمول اولیه دلخواه اجرای کرد.
جدول 1: مقادیر N_1, n_1 و α_1 همچنین مقادیر مؤلفه‌های بردار π^b_j در مراحل مختلف مثال (1)

<table>
<thead>
<tr>
<th>مؤلفه‌های بردار π^b_j در مرحله اول</th>
<th>مؤلفه‌های بردار π^b_j در مرحله دوم</th>
<th>مؤلفه‌های بردار π^b_j در مرحله سوم</th>
<th>مؤلفه‌های بردار π^b_j در مرحله چهارم</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^b_1 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 0$</td>
<td>$\pi^b_1 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 0$</td>
<td>$\pi^b_1 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 0$</td>
<td>$\pi^b_1 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 0$</td>
</tr>
<tr>
<td>$\pi^b_2 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 1$</td>
<td>$\pi^b_2 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 1$</td>
<td>$\pi^b_2 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 1$</td>
<td>$\pi^b_2 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 1$</td>
</tr>
<tr>
<td>$\pi^b_3 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
<td>$\pi^b_3 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
<td>$\pi^b_3 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
<td>$\pi^b_3 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
</tr>
<tr>
<td>$\pi^b_4 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{11}{11}$</td>
<td>$\pi^b_4 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{11}{11}$</td>
<td>$\pi^b_4 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{11}{11}$</td>
<td>$\pi^b_4 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{11}{11}$</td>
</tr>
<tr>
<td>$\pi^b_5 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 1$</td>
<td>$\pi^b_5 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 1$</td>
<td>$\pi^b_5 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 1$</td>
<td>$\pi^b_5 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 1$</td>
</tr>
<tr>
<td>$\pi^b_6 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 0$</td>
<td>$\pi^b_6 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 0$</td>
<td>$\pi^b_6 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 0$</td>
<td>$\pi^b_6 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = 0$</td>
</tr>
<tr>
<td>$\pi^b_7 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
<td>$\pi^b_7 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
<td>$\pi^b_7 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
<td>$\pi^b_7 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
</tr>
<tr>
<td>$\pi^b_8 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
<td>$\pi^b_8 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
<td>$\pi^b_8 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
<td>$\pi^b_8 = \frac{3}{11} - \frac{6}{11} \cdot \frac{3}{11} = \frac{3}{11}$</td>
</tr>
</tbody>
</table>

$N_3 = 2 \quad N_2 = 4 \quad N_1 = 6 \quad N = 8$

$n_3 = \frac{3}{11} + \frac{11}{11} = 1 \quad n_2 = \frac{1}{11} + \frac{7}{11} = 2 \quad n_1 = \frac{1}{11} + \frac{1}{11} + \frac{5}{11} = 3 \quad n = 4$

$\alpha_4 = \frac{6}{11} \quad \alpha_3 = \frac{3}{2} \quad \alpha_2 = \frac{3}{2} \quad \alpha_1 = \frac{1}{2}$
جدول ۲: خروجی‌های ممکن مقایسه‌ی بردار π^a و π^b در مرحله مختلف

<table>
<thead>
<tr>
<th>خروجی‌ها</th>
<th>$3/4$</th>
<th>$2/3$</th>
<th>$5/8$</th>
<th>$4/7$</th>
<th>$3/7$</th>
<th>$3/8$</th>
<th>$1/3$</th>
<th>$1/4$</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>π^a</td>
<td>مرحله اول</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>$5/6$</td>
<td>$3/4$</td>
<td>$9/14$</td>
<td>$5/14$</td>
<td>$1/4$</td>
<td>$1/6$</td>
<td>π^b</td>
<td></td>
</tr>
<tr>
<td>E_2</td>
<td>1</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>0</td>
<td>π^a</td>
<td>مرحله دوم</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>$7/8$</td>
<td>$5/7$</td>
<td>$2/7$</td>
<td>$1/8$</td>
<td>0</td>
<td>π^b</td>
<td></td>
</tr>
<tr>
<td>E_3</td>
<td>1</td>
<td>1</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>0</td>
<td>0</td>
<td>π^a</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$11/14$</td>
<td>$3/14$</td>
<td>0</td>
<td>0</td>
<td>π^b</td>
<td></td>
</tr>
<tr>
<td>E_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$1/2$</td>
<td>$1/2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>π^a</td>
</tr>
<tr>
<td>E_5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>π^b</td>
<td></td>
</tr>
</tbody>
</table>

